1
|
Xiao F, Wang X, Ebel B, Oppel IM, Patureau FW. O 2-Mediated Cu-Catalyzed Dehydrogenative Phenothiazination. J Org Chem 2025; 90:1180-1185. [PMID: 39745341 DOI: 10.1021/acs.joc.4c02590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
In contrast to what one can be led to believe upon inspecting some of the recent literature, the dehydrogenative phenothiazination reaction does not require onerous technologies, complicated setups, or advanced catalysts in order to be mild and sustainable. We demonstrate this herein with a most facile, cost-effective, and sustainable Cu(II) catalyzed method, under 1 atm of O2 at room temperature in methanol, providing broad scope and high yields. These new results further set the dehydrogenative phenothiazination reaction among the green and practical coupling concepts of chemistry.
Collapse
Affiliation(s)
- Fang Xiao
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Xingben Wang
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Ben Ebel
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Iris M Oppel
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
2
|
Morimoto K, Yanase K, Toda K, Takeuchi H, Dohi T, Kita Y. Cyclic Hypervalent Iodine-Induced Oxidative Phenol and Aniline Couplings with Phenothiazines. Org Lett 2022; 24:6088-6092. [PMID: 35921162 DOI: 10.1021/acs.orglett.2c02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-H/N-H bond functionalization for direct intermolecular aryl C-N couplings is a useful synthetic process. In this study, we achieved metal-free cross-dehydrogenative coupling of phenols and anilines with phenothiazines using hypervalent iodine reagents. This method affords selective amination products under mild conditions. Electron-rich phenols and anilines could be employed, affording moderate-to-high yields of N-arylphenothiazines. Aniline amination proceeded efficiently at 20 °C, a previously unreported phenomenon.
Collapse
Affiliation(s)
- Koji Morimoto
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.,Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Kana Yanase
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Kentaro Toda
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Takeuchi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.,Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
3
|
Purtsas A, Rosenkranz M, Dmitrieva E, Kataeva O, Knölker H. Iron-Catalyzed Oxidative C-O and C-N Coupling Reactions Using Air as Sole Oxidant. Chemistry 2022; 28:e202104292. [PMID: 35179270 PMCID: PMC9314016 DOI: 10.1002/chem.202104292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 01/31/2023]
Abstract
We describe the oxygenation of tertiary arylamines, and the amination of tertiary arylamines and phenols. The key step of these coupling reactions is an iron-catalyzed oxidative C-O or C-N bond formation which generally provides the corresponding products in high yields and with excellent regioselectivity. The transformations are accomplished using hexadecafluorophthalocyanine-iron(II) (FePcF16 ) as catalyst in the presence of an acid or a base additive and require only ambient air as sole oxidant.
Collapse
Affiliation(s)
- Alexander Purtsas
- Fakultät ChemieTechnische Universität DresdenBergstraße 6601069DresdenGermany
| | - Marco Rosenkranz
- Center of SpectroelectrochemistryLeibniz Institute for Solid State and Materials Research (IFW) DresdenHelmholtzstraße 2001069DresdenGermany
| | - Evgenia Dmitrieva
- Center of SpectroelectrochemistryLeibniz Institute for Solid State and Materials Research (IFW) DresdenHelmholtzstraße 2001069DresdenGermany
| | - Olga Kataeva
- A. E. Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center, Russian Academy of SciencesArbuzov Str. 8Kazan420088Russia
| | | |
Collapse
|
4
|
Vemuri P, Cremer C, Patureau FW. Te(II)-Catalyzed Cross-Dehydrogenative Phenothiazination of Anilines. Org Lett 2022; 24:1626-1630. [PMID: 35192766 PMCID: PMC8902801 DOI: 10.1021/acs.orglett.2c00125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 12/11/2022]
Abstract
Oxidative clicklike reactions are useful for the late-stage functionalization of pharmaceuticals and organic materials. Hence, novel methodologies that enable such transformations are in high demand. Herein we describe a tellurium(II)-catalyzed cross-dehydrogenative phenothiazination (CDP) of aromatic amines. A key feature of this method is a cooperative effect between the phenotellurazine catalyst and the silver salt, which serves as a chemical oxidant for the reaction. This novel catalysis concept therefore enables a considerably broader scope compared with previous chemical oxidation methods.
Collapse
Affiliation(s)
- Pooja
Y. Vemuri
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Christopher Cremer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W. Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
5
|
Xia W, Zhou ZA, Lv J, Xiang SH, Wang YB, Tan B. Facile synthesis of N-aryl phenothiazines and phenoxazines via Brønsted acid catalyzed C-H amination of arenes. Chem Commun (Camb) 2022; 58:1613-1616. [PMID: 35019918 DOI: 10.1039/d1cc06730c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
N-Aryl phenothiazines and phenoxazines are of significant importance in various disciplines throughout academia and industry. The conventional synthetic strategy for the construction of these structures centers on the transition-metal-catalyzed cross-coupling of aryl halides with phenothiazines or phenoxazines. Here we present an organocatalytic approach to access N-naphthyl phenothiazine and phenoxazine scaffolds through a straightforward C-H amination of arenes as enabled by an azo group. This reaction features operational simplicity, adequate substrate generality and excellent functional group compatibility. Notably, the efficiency of the catalyst could be perfectly preserved after 5 catalytic cycles.
Collapse
Affiliation(s)
- Wang Xia
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Zi-An Zhou
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jie Lv
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China. .,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong-Bin Wang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Bin Tan
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
6
|
Chen S, Li YN, Xiang SH, Li S, Tan B. Electrochemical phenothiazination of naphthylamines and its application in photocatalysis. Chem Commun (Camb) 2021; 57:8512-8515. [PMID: 34351332 DOI: 10.1039/d1cc03276c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
N-Phenylphenothiazine as an inexpensive, highly reductive and oxygen tolerant organophotocatalyst has exhibited potential in various challenging photochemical transformations. Here we report a general and straightforward method to access structurally diverse N-phenylphenothiazine derivatives by means of a novel electrochemical tool. The introduction of a 2-naphthylamine moiety with an extended π-system and an amine group led to the variation of spectral characterization. Photochemical verification experiments demonstrated that the formed N-arylation products with good efficacy and chemo/site-control displayed competitive catalytic activity in challenging transformations.
Collapse
Affiliation(s)
- Song Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | | | | | | | | |
Collapse
|
7
|
Puthanveedu M, Khamraev V, Brieger L, Strohmann C, Antonchick AP. Electrochemical Dehydrogenative C(sp 2 )-H Amination. Chemistry 2021; 27:8008-8012. [PMID: 33931904 PMCID: PMC8251997 DOI: 10.1002/chem.202100960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 02/06/2023]
Abstract
A transition-metal-free direct electrolytic C-H amination involving an electrochemically generated nitrenium ion intermediate has been developed. The electrosynthesis takes place in the absence of any organoiodine catalysts and is enabled by an in situ generated electrolyte. A novel, efficient intramolecular and intermolecular C-H amination has been demonstrated using a simple reaction setup.
Collapse
Affiliation(s)
- Mahesh Puthanveedu
- Max-Planck-Institut für Molekulare PhysiologieAbteilung Chemische BiologieOtto-Hahn-Straße 1144227DortmundGermany
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieChemische BiologieOtto-Hahn-Straße 4a44221DortmundGermany
| | - Vladislav Khamraev
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieChemische BiologieOtto-Hahn-Straße 4a44221DortmundGermany
- North Caucasus Federal UniversityDepartment of Chemistry1a Pushkin St.355009StavropolRussian Federation
- Present address: D. I. Mendeleev University of Chemical Technology of Russia9 Miusskaya Square, 125047MoscowRussian Federation
| | - Lukas Brieger
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieAnorganische ChemieOtto-Hahn-Straße 644227DortmundGermany
| | - Carsten Strohmann
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieAnorganische ChemieOtto-Hahn-Straße 644227DortmundGermany
| | - Andrey P. Antonchick
- Max-Planck-Institut für Molekulare PhysiologieAbteilung Chemische BiologieOtto-Hahn-Straße 1144227DortmundGermany
- Technische Universität DortmundFakultät für Chemie und Chemische BiologieChemische BiologieOtto-Hahn-Straße 4a44221DortmundGermany
- Nottingham Trent UniversityCollege of Science and TechnologyDepartment of Chemistry and ForensicsClifton LaneNG11 8NSNottinghamUK
| |
Collapse
|
8
|
Li Y, Wang XY, Ren X, Dou B, Zhu X, Hao XQ, Song MP. Iron-Mediated Selective Sulfonylmethylation of Aniline Derivatives with p-Toluenesulfonylmethyl Isocyanide (TosMIC). J Org Chem 2021; 86:7179-7188. [PMID: 33960194 DOI: 10.1021/acs.joc.1c00500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iron-mediated highly selective C-H sulfonylmethylation of aniline derivatives with p-toluenesulfonylmethyl isocyanide in a mixture solvent of H2O and PEG400 under an Ar atmosphere has been realized. This transformation proceeds with operational convenience, use of earth-abundant metal catalyst and nontoxic media, broad substrate scope, and good functional group tolerance. The current methodology could be applied to the regioselective C-H sulfonylmethylation of indolines, tetrahydroquinolines, and tertiary anilines.
Collapse
Affiliation(s)
- Yigao Li
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xu-Yan Wang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xiaohuang Ren
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Baoheng Dou
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
9
|
Cremer C, Eltester MA, Bourakhouadar H, Atodiresei IL, Patureau FW. Dehydrogenative C-H Phenochalcogenazination. Org Lett 2021; 23:3243-3247. [PMID: 33848168 PMCID: PMC8155573 DOI: 10.1021/acs.orglett.1c00573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Heavy-atom-modified
chalcogen-fused triarylamine organic materials
are becoming increasingly important in the photochemical sciences.
In this context, the general and direct dehydrogenative C–H
phenochalcogenazination of phenols with the heavier chalcogens selenium
and tellurium is herein described. The latter dehydrogenative C–N
bond-forming processes operate under simple reaction conditions with
highly sustainable O2 serving as the terminal oxidant.
Collapse
Affiliation(s)
- Christopher Cremer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - M Alexander Eltester
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Hicham Bourakhouadar
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Iuliana L Atodiresei
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
10
|
Matsuzawa T, Hosoya T, Yoshida S. Transition-Metal-Free Synthesis of N-Arylphenothiazines through an N- and S-Arylation Sequence. Org Lett 2021; 23:2347-2352. [PMID: 33667111 DOI: 10.1021/acs.orglett.1c00515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An efficient synthetic method of N-arylphenothiazines from o-sulfanylanilines under transition-metal-free conditions is disclosed. An N- and S-arylation sequence of o-sulfanylanilines enabled us to synthesize a wide variety of N-arylphenothiazines. In particular, one-pot synthesis of N-arylphenothiazines was accomplished from easily available modules through preparation of o-sulfanylanilines by thioamination of aryne intermediates and following N- and S-arylation sequence.
Collapse
Affiliation(s)
- Tsubasa Matsuzawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
11
|
Cremer C, Goswami M, Rank CK, Bruin B, Patureau FW. Tellur(II)/Tellur(III)‐katalysierte dehydrierende C‐N‐Bindungsbildung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Christopher Cremer
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | | | - Christian K. Rank
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Bas Bruin
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam Niederlande
| | - Frederic W. Patureau
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
12
|
Cremer C, Goswami M, Rank CK, de Bruin B, Patureau FW. Tellurium(II)/Tellurium(III)-Catalyzed Cross-Dehydrogenative C-N Bond Formation. Angew Chem Int Ed Engl 2021; 60:6451-6456. [PMID: 33320996 PMCID: PMC7986434 DOI: 10.1002/anie.202015248] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/11/2020] [Indexed: 01/03/2023]
Abstract
The TeII /TeIII -catalyzed dehydrogenative C-H phenothiazination of challenging phenols featuring electron-withdrawing substituents under mild aerobic conditions and with high yields is described. These unexpected TeII /TeIII radical catalytic properties were characterized by cyclic voltammetry, EPR spectroscopy, kinetic experiments, and DFT calculations.
Collapse
Affiliation(s)
- Christopher Cremer
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | | - Christian K. Rank
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Bas de Bruin
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Frederic W. Patureau
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
13
|
Sakthivel P, Adarsh Krishna TP, Ilangovan A. Photocatalyzed Chemo‐Selective Alkylation of Quinones and Phenothiazinones with Alkyl Amides: Photophysical and Cytotoxic Activity Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202100054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pandaram Sakthivel
- School of Chemistry Bharathidasan University Tiruchirappalli 620024 India
| | | | - Andivelu Ilangovan
- School of Chemistry Bharathidasan University Tiruchirappalli 620024 India
| |
Collapse
|
14
|
Nucleophilic Aromatic Substitution of Polyfluoroarene to Access Highly Functionalized 10-Phenylphenothiazine Derivatives. Molecules 2021; 26:molecules26051365. [PMID: 33806360 PMCID: PMC7962002 DOI: 10.3390/molecules26051365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Abstract
Nucleophilic aromatic substitution (SNAr) reactions can provide metal-free access to synthesize monosubstituted aromatic compounds. We developed efficient SNAr conditions for p-selective substitution of polyfluoroarenes with phenothiazine in the presence of a mild base to afford the corresponding 10-phenylphenothiazine (PTH) derivatives. The resulting polyfluoroarene-bearing PTH derivatives were subjected to a second SNAr reaction to generate highly functionalized PTH derivatives with potential applicability as photocatalysts for the reduction of carbon–halogen bonds.
Collapse
|
15
|
Ni Y, Wan X, Zuo H, Bashir MA, Liu Y, Yu H, Liao RZ, Wu G, Zhong F. Iron-catalyzed cross-dehydrogenative C–H amidation of benzofurans and benzothiophenes with anilines. Org Chem Front 2021. [DOI: 10.1039/d0qo01651a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An efficient iron-catalyzed radical cross-dehydrogenative aromatic C–H amidation provides a straightforward access to structurally diverse diarylamine derivatives incorporating benzofuran/benzothiophene motifs.
Collapse
Affiliation(s)
- Yang Ni
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Xiang Wan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Honghua Zuo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Muhammad Adnan Bashir
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Yu Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Huaibin Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Guojiao Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Fangrui Zhong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| |
Collapse
|
16
|
Jana S, Empel C, Pei C, Vinh Nguyen T, Koenigs RM. Gold‐catalyzed C−H Functionalization of Phenothiazines with Aryldiazoacetates. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sripati Jana
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| | - Claire Empel
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
- University of New South Wales School of Chemistry Sydney Australia
| | - Chao Pei
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| | | | - Rene M. Koenigs
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
- University of New South Wales School of Chemistry Sydney Australia
| |
Collapse
|
17
|
Enantioselective Synthesis of Tetrahydroquinolines
via
One‐Pot
Cascade Biomimetic Reduction
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Kumar M, Sharma R, Raziullah, Khan AA, Ahmad A, Dutta HS, Koley D. Cu(II)-Catalyzed Ortho C(sp 2)-H Diarylamination of Arylamines To Synthesize Triarylamines. Org Lett 2020; 22:2152-2156. [PMID: 32129076 DOI: 10.1021/acs.orglett.0c00196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A copper-catalyzed, directed ortho C-H diarylamination of indoles, indolines, anilines, and N-aryl-7-azaindoles has been established. Only copper salt as the catalyst and oxygen as the terminal oxidant are used to synthesize triarylamines using various diarylamines including carbazole and phenothiazine. Mechanistic interrogation reveals that copper plays a dual role.
Collapse
Affiliation(s)
- Mohit Kumar
- Academy of Scientific and Innovative Research, New Delhi, 110001, India
| | - Rishabh Sharma
- National Institute of Pharmaceutical Education and Research, Chunilal Bhawan, 168, Manicktala Road, Kolkata, 700054, India
| | - Raziullah
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Afsar Ali Khan
- Academy of Scientific and Innovative Research, New Delhi, 110001, India
| | - Ashfaq Ahmad
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Dipankar Koley
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research, New Delhi, 110001, India
| |
Collapse
|