1
|
Gao Y, Peng JY, Zhang YN, Zhao XL, Zhao YL. A copper-catalyzed tandem cyclization reaction of N-acyl enamines and electron-deficient alkynes: direct synthesis of alkynyl substituted pyridines. Org Biomol Chem 2025; 23:4441-4445. [PMID: 40207876 DOI: 10.1039/d5ob00390c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
A copper-catalyzed coupling-cyclization reaction of N-acyl enamides with electron-deficient alkynes is developed. This reaction tolerates a wide range of N-acyl enamines and provides a simple and efficient method for the synthesis of 3-alkynyl-substituted pyridines in good to high yields from easily available acyclic starting materials with only water and hydrogen as the by-products in a single step.
Collapse
Affiliation(s)
- Ying Gao
- Department of Stomatology, No. 964 Hospital, Changchun, Jilin 130021, China.
| | - Ju-Yin Peng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Yu-Na Zhang
- Department of Stomatology, No. 964 Hospital, Changchun, Jilin 130021, China.
| | - Xiao-Liang Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
2
|
Ma JB, Zhao QS, Yin YM, Yang S, Shao JQ, Yan SJ. Cascade [3 + 2]/[4 + 2] Cycloaddition of Enaminones with Vinylene Carbonate for the Synthesis of Functionalized Pyrrolo[2,1- a]isoquinoline Derivatives. Org Lett 2024; 26:9752-9758. [PMID: 39504005 DOI: 10.1021/acs.orglett.4c03638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We developed a protocol for the synthesis of functionalized pyrrolo[2,1-a]isoquinoline derivatives (PIQDs) 3 from enaminones 1 using vinylene carbonate 2. This strategy involved [3 + 2] and [4 + 2] cycloadditions via heating a mixture of substrates 1 with vinylene carbonate 2 and DCE at 60 °C, catalyzed by [Cp*RhCl2]2 and oxidized with Cu(OAc)2 and AgSbF6 promoted by NaOAc. As we increased the reaction temperature to 110 °C under the same conditions, we synthesized PIQDs 4 through sequential C-H activation, alkene insertion, migratory insertion, C-N reductive elimination, β-O elimination, and finally dehydration. As a result, a series of PIQDs 3-4 were generated by forming four bonds (2 C-C and 2 C-N bonds) in a single step. This strategy realizes the synthesis of linear molecules with potential biological activity, specifically natural-like heterocycles (3-4). It expands the application of vinylene carbonate as a C2 synthon in the construction of pyrrole and isoquinoline skeletons for the synthesis of functionalized PIQDs in combinatorial and parallel syntheses via one-pot reactions.
Collapse
Affiliation(s)
- Jian-Bo Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Qing-Sheng Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yi-Mai Yin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Shu Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Jia-Qi Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
3
|
Shurupova OV, Tarasova ES, Rzhevskiy SA, Minaeva LI, Topchiy MA, Asachenko AF. Novel convenient 2-step synthesis of pyrido[1,2- a]indoles from pyrylium salts and o-bromoanilines. Org Biomol Chem 2024; 22:6742-6747. [PMID: 39105369 DOI: 10.1039/d4ob00994k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A novel convenient 2-step synthesis of substituted pyrido[1,2-a]indoles is developed starting from easily available pyrylium tetrafluoroborates and ortho-bromoanilines. A conversion of the pyrylium tetrafluoroborates to pyridinium ones followed by their palladium catalyzed intramolecular cyclization allows the formation of 24 examples of N-fused heterocycles. A one-pot two-stage cyclization procedure was developed. The utility of the methodology was demonstrated with the synthesis of new pyrido[1,2-a]indoles bearing different alkyl, aryl, chlorine, fluorine and methoxy substituents.
Collapse
Affiliation(s)
- Olga V Shurupova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| | - Ekaterina S Tarasova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| | - Sergey A Rzhevskiy
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| | - Lidiya I Minaeva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| | - Maxim A Topchiy
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| | - Andrey F Asachenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Oyejobi AO, Huang J, Luo YX, Tang XY, Wang L. Photooxidative Reaction of β-Oxoamides with Amines for the Synthesis of Pyrrolin-4-ones under External Photocatalyst-Free Conditions. J Org Chem 2024; 89:9972-9978. [PMID: 38954774 DOI: 10.1021/acs.joc.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The incorporation of oxygen atoms from air under aerobic conditions plays an important role in organic synthesis. Herein, Brønsted acids are found to be a two-in-one strategic catalyst to transform enamines from β-oxoamides and amines to pyrrolin-4-ones without an external photocatalyst under visible-light conditions. The Brønsted acid can inhibit the C-C bond fragmentation of the [2 + 2] adduct from enamine and 1O2, but most importantly, it can form photosensitizers with enamine and pyrrolin-4-one product by acidochromism to promote the 1O2 generation.
Collapse
Affiliation(s)
- Aanuoluwapo O Oyejobi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jie Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yun-Xuan Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiang-Ying Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Long Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
5
|
Liu D, Song S, Chen L, Zhang M, Liu Z, Lu X, Huang J, Yu F. Access to thiionized-, selenolized-, and alkylated 5-alkylidene 3-pyrrolin-2-one derivatives via a regioselective oxidative annulation reaction. Org Biomol Chem 2023; 21:2596-2602. [PMID: 36891944 DOI: 10.1039/d3ob00014a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A metal-free regioselective oxidative annulation reaction of readily available 2,4-pentanediones with primary amines has been described. This protocol provides a divergent strategy for the incorporation of various radical donors into 5-alkylidene 3-pyrrolin-2-one skeletons, producing a variety of thiionized-, selenolized-, and alkylated 5-alkylidene 3-pyrrolin-2-one derivatives. Moreover, the diverse synthetic transformations of the 5-alkylidene 3-pyrrolin-2-one products were also investigated.
Collapse
Affiliation(s)
- Donghan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Longkun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Zhuoyuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Xihang Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Jiuzhong Huang
- School of Pharmacy and Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, P. R. China.
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| |
Collapse
|
6
|
Hu XM, Huang R, Wen QL, Duan YG, Cao XL, Yan SJ. Hydroxyl-Directed Rh(III)-Catalyzed C-H Functionalization: Access to Benzo[ de]chromenes. Org Lett 2023; 25:1622-1627. [PMID: 36867606 DOI: 10.1021/acs.orglett.3c00095] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A cascade oxidative annulation reaction of heterocyclic ketene aminals (HKAs) with internal alkynes catalyzed by [Cp*RhCl2]2 and oxidized by Cu(OAc)2·H2O was developed to efficiently synthesize highly functionalized benzo[de]chromene derivatives in good to excellent yields. The reaction proceeded by the sequential cleavage of C(sp2)-H/O-H and C(sp2)-H/C(sp2)-H bonds. These multicomponent cascade reactions were highly regioselective. In addition, all of the benzo[de]chromene products exhibited intense fluorescence emission in the solid state, and they demonstrated concentration-dependent quenching in the presence of Fe3+, indicating that these compounds could be used in the recognition of Fe3+.
Collapse
Affiliation(s)
- Xing-Mei Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Rong Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Qiu-Lin Wen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Ying-Gang Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xin-Ling Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
7
|
Ma J, Tan Y, Tang Y, Cui X, Xu J, Li Y, Wang X. Base‐Promoted Cascade C–N and C–C Formation: An Approach to Pyrido[1,2‐a]pyrimidinones from Ynones and 2‐Methylpyrimidin‐4‐ols. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianting Ma
- Hainan Medical University School of Pharmacy CHINA
| | - Yinfeng Tan
- Hainan Medical University School of Pharmacy CHINA
| | - Yao Tang
- Hainan Medical University School of Pharmacy CHINA
| | - Xue Cui
- Hainan Medical University School of Pharmacy CHINA
| | - Junyu Xu
- Hainan Medical University School of Pharmacy CHINA
| | - Youbin Li
- Hainan Medical University School of Pharmacy CHINA
| | - Xuesong Wang
- Hainan Medical University school of pharmacy Xueyuan Road 571199 Haikou CHINA
| |
Collapse
|
8
|
Raju CE, Balasubramanian S, Karunakar GV. Copper(I)-Catalyzed Formation of Isoquinoline and Quinoline Substituted Isobenzofurans. Org Lett 2022; 24:2899-2904. [DOI: 10.1021/acs.orglett.2c00864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chittala Emmaniel Raju
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India and
| | - Sridhar Balasubramanian
- Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Galla V. Karunakar
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India and
| |
Collapse
|
9
|
Xiaoyong Z, Lili Y, Junfang G, Yue G, Yulong Z. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU)-Promoted Nucleophilic Addition of Two Molecules of Nitroalkanes to Diazo Compounds: Synthesis of Highly Functionalized Hydrazones and Tetrahydropyridazines. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Chen XY, Zhang X, Wan JP. Recent advances in transition metal-free annulation toward heterocycle diversity based on the C-N bond cleavage of enaminone platform. Org Biomol Chem 2022; 20:2356-2369. [DOI: 10.1039/d2ob00126h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enaminones and analogous stable enamines are well known as platform building blocks in organic synthesis for construction of heterocyclic compounds, especially N-heterocycles. To date, especially enaminones have been successfully...
Collapse
|
11
|
Kang QQ, Wang ZY, Hu SJ, Luo CM, Cai XE, Sun YB, Li T, Wei WT. Copper-catalyzed switchable cyclization of alkyne-tethered α-bromocarbonyls: selective access to quinolin-2-ones and quinoline-2,4-diones. Org Chem Front 2022. [DOI: 10.1039/d2qo01240e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Copper-catalyzed cyclization of alkynes has played a significant role in modern catalytic chemistry.
Collapse
Affiliation(s)
- Qing-Qing Kang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zi-Ying Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Sen-Jie Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chun-Mei Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xue-Er Cai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yong-Bin Sun
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
12
|
Yang M, Liu T, Gong Y, Ai QW, Zhao YL. Rhodium-catalyzed coupling-cyclization of o-alkynyl/propargyl arylazides or o-azidoaryl acetylenic ketones with arylisocyanides: synthesis of 6 H-indolo[2,3- b]quinolines, dibenzonaphthyridones and dihydrodibenzo[ b, g] [1,8]-naphthyridines. Org Chem Front 2022. [DOI: 10.1039/d2qo00503d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The developed rhodium-catalyzed coupling-cyclization provides a new strategy for the assembly of 6H-indolo[2,3-b]quinolines, dibenzonaphthyridones and dihydrodibenzo[b,g] [1,8]-naphthyridines.
Collapse
Affiliation(s)
- Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Tao Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yue Gong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qing-Wen Ai
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
13
|
Li K, Lv Y, Lu Z, Yun X, Yan S. An environmentally benign multi-component reaction: Highly regioselective synthesis of functionalized 2-(diarylphosphoryl)-1,2-dihydro-pyridine derivatives. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
14
|
Duan YG, Hu XM, Cao XL, Lv KH, Yan SJ. Multicomponent Cascade Reaction of 3-Formylchromones: Highly Selective Synthesis of Functionalized 9-Azabicyclo[3.3.1]nonane Derivatives. Org Lett 2021; 23:6866-6871. [PMID: 34410137 DOI: 10.1021/acs.orglett.1c02431] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel protocol for the preparation of functionalized 9-azabicyclo[3.3.1]nonane (ABCN) derivatives from 3-formylchromones, enaminones, and heterocyclic ketene aminals (HKAs) through an unprecedented cascade reaction has been developed by simply refluxing the mixture of the substrates 1-3. As a result, a series of ABCNs were produced through a very complex cascade reaction. This protocol can be used in the synthesis of ABCNs that are suitable for combinatorial and parallel syntheses of ABCN natural-like products in a one-pot reaction.
Collapse
Affiliation(s)
- Ying-Gang Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xing-Mei Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xin-Ling Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Kai-Hong Lv
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
15
|
Chemoselective synthesis of β-enaminones from ynones and aminoalkyl-, phenol- and thioanilines under metal-free conditions. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01599-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Nan J, Zhang J, Hu Y, Wang C, Wang T, Wang W, Ma Y, Szostak M. Cu II-Catalyzed Coupling with Two Ynone Units by Selective Triple and Sigma C-C and C-H Bond Cleavages. Org Lett 2021; 23:1928-1933. [PMID: 33570962 DOI: 10.1021/acs.orglett.1c00371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a new copper-catalyzed [2 + 2 + 1] annulation process through the selective cleavage of sigma and triple C-C and C-H bonds using two ynone units. This new methodology involves breaking multiple chemical bonds in a single operation, including C≡C, C-C, C-H, and N-O. These high-value adducts lead to a diverse collection of synthetically challenging trisubstituted indolizines by the simultaneous engagement of different bond-breaking events and show excellent fluorescence in green aqueous solutions.
Collapse
Affiliation(s)
- Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiawen Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Hu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chao Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tingting Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Weitao Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Michal Szostak
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.,Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
17
|
Chen Z, Shi G, Tang W, Sun J, Wang W. Electrochemical Oxidative Cyclization: Synthesis of Polysubstituted Pyrrole from Enamines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhiwei Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P.R. China
| | - Guang Shi
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P.R. China
| | - Wei Tang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P.R. China
| | - Jie Sun
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P.R. China
| | - Wenxing Wang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P.R. China
| |
Collapse
|
18
|
Khan I, Ibrar A, Zaib S. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges. Top Curr Chem (Cham) 2021; 379:3. [PMID: 33398642 DOI: 10.1007/s41061-020-00316-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Heterocycles, heteroaromatics and spirocyclic entities are ubiquitous components of a wide plethora of synthetic drugs, biologically active natural products, marketed pharmaceuticals and agrochemical targets. Recognizing their high proportion in drugs and rich pharmacological potential, these invaluable structural motifs have garnered significant interest, thus enabling the development of efficient catalytic methodologies providing access to architecturally complex and diverse molecules with high atom-economy and low cost. These chemical processes not only allow the formation of diverse heterocycles but also utilize a range of flexible and easily accessible building units in a single operation to discover diversity-oriented synthetic approaches. Alkynoates are significantly important, diverse and powerful building blocks in organic chemistry due to their unique and inherent properties such as the electronic bias on carbon-carbon triple bonds posed by electron-withdrawing groups or the metallic coordination site provided by carbonyl groups. The present review highlights the comprehensive picture of the utility of alkynoates (2007-2019) for the synthesis of various heterocycles (> 50 types) using transition-metal catalysts (Ru, Rh, Pd, Ir, Ag, Au, Pt, Cu, Mn, Fe) in various forms. The valuable function of versatile alkynoates (bearing multifunctional groups) as simple and useful starting materials is explored, thus cyclizing with an array of coupling partners to deliver a broad range of oxygen-, nitrogen-, sulfur-containing heterocycles alongside fused-, and spiro-heterocyclic compounds. In addition, these examples will also focus the scope and reaction limitations, as well as mechanistic investigations into the synthesis of these heterocycles. The biological significance will also be discussed, citing relevant examples of drug molecules highlighting each class of heterocycles. This review summarizes the recent developments in the synthetic methods for the synthesis of various heterocycles using alkynoates as readily available starting materials under transition-metal catalysis.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur, KPK-22620, Pakistan
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
19
|
Yao Y, Alami M, Hamze A, Provot O. Recent advances in the synthesis of pyrido[1,2-a]indoles. Org Biomol Chem 2021; 19:3509-3526. [DOI: 10.1039/d1ob00153a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review deals with the different accesses leading to the pyrido[1,2-a]indole nucleus in the last 20 years.
Collapse
Affiliation(s)
- Yunxin Yao
- Université Paris-Saclay
- CNRS
- BioCIS
- 92290 Châtenay-Malabry
- France
| | - Mouad Alami
- Université Paris-Saclay
- CNRS
- BioCIS
- 92290 Châtenay-Malabry
- France
| | - Abdallah Hamze
- Université Paris-Saclay
- CNRS
- BioCIS
- 92290 Châtenay-Malabry
- France
| | - Olivier Provot
- Université Paris-Saclay
- CNRS
- BioCIS
- 92290 Châtenay-Malabry
- France
| |
Collapse
|
20
|
Shang L, Feng Y, Gao X, Chen Z, Xia Y, Jin W, Liu C. DMAP‐Catalyzed
C—N Bond Formation for Diverse Synthesis of Imidazo[1,2‐
a
]pyrimidine and Pyrimido[1,2‐
a
]benzimidazole Derivatives. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Le‐Le Shang
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Yun Feng
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Xing‐Lian Gao
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Zi‐Ren Chen
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Yu Xia
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Wei‐Wei Jin
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Chen‐Jiang Liu
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| |
Collapse
|
21
|
Li K, Huang R, Chen L, Lv Y, Yan SJ. Cu(II)/Iodine(III) Oxide Dimerization of Heterocyclic Ketene Aminals: Tandem TEMPO Oxidation for the Highly Selective Synthesis of Functionalized 2H-Pyrrolo[1,2-a]imidazol-7(3H)-ones. Org Lett 2020; 22:8210-8214. [DOI: 10.1021/acs.orglett.0c02689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kun Li
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Rong Huang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Li Chen
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Ying Lv
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
22
|
Ding Q, Yu Y, Huang F, Zhang L, Zheng JG, Xu M, Baell JB, Huang H. A Reusable CNT-Supported Single-Atom Iron Catalyst for the Highly Efficient Synthesis of C-N Bonds. Chemistry 2020; 26:4592-4598. [PMID: 32053247 DOI: 10.1002/chem.201905468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 01/21/2023]
Abstract
C-N bond formation is regarded as a very useful and fundamental reaction for the synthesis of nitrogen-containing molecules in both organic and pharmaceutical chemistry. Noble-metal and homogeneous catalysts have frequently been used for C-N bond formation, however, these catalysts have a number of disadvantages, such as high cost, toxicity, and low atom economy. In this work, a low-toxic and cheap iron complex (iron ethylene-1,2-diamine) has been loaded onto carbon nanotubes (CNTs) to prepare a heterogeneous single-atom catalyst (SAC) named Fe-Nx /CNTs. We employed this SAC in the synthesis of C-N bonds for the first time. It was found that Fe-Nx /CNTs is an efficient catalyst for the synthesis of C-N bonds starting from aromatic amines and ketones. Its catalytic performance was excellent, giving yields of up to 96 %, six-fold higher than the yields obtained with noble-metal catalysts, such as AuCl3 /CNTs and RhCl3 /CNTs. The catalyst showed efficacy in the reactions of thirteen aromatic amine substrates, without the need for additives, and seventeen enaminones were obtained. High-angle annular dark-field scanning transmission electron microscopy in combination with X-ray absorption spectroscopy revealed that the iron species were well dispersed in the Fe-Nx /CNTs catalyst as single atoms and that Fe-Nx might be the catalytic active species. This Fe-Nx /CNTs catalyst has potential industrial applications as it could be cycled seven times without any significant loss of activity.
Collapse
Affiliation(s)
- Qifeng Ding
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jian-Guo Zheng
- Irvine Materials Research Institute, University of California, Irvine, CA, 92697-2800, USA
| | - Mingjie Xu
- Irvine Materials Research Institute, University of California, Irvine, CA, 92697-2800, USA
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.,Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
23
|
Zalte RR, Festa AA, Golantsov NE, Subramani K, Rybakov VB, Varlamov AV, Luque R, Voskressensky LG. Aza-Henry and aza-Knoevenagel reactions of nitriles for the synthesis of pyrido[1,2-a]indoles. Chem Commun (Camb) 2020; 56:6527-6530. [DOI: 10.1039/d0cc01652g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
N-(Propargyl)indole-2-carbonitriles undergo DBU-catalyzed addition of CH-acids to nitriles, followed by cyclization to give 9-aminopyrido[1,2-a]indoles.
Collapse
Affiliation(s)
- Rajesh R. Zalte
- Organic Chemistry Department
- Science Faculty
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russia
| | - Alexey A. Festa
- Organic Chemistry Department
- Science Faculty
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russia
| | - Nikita E. Golantsov
- Organic Chemistry Department
- Science Faculty
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russia
| | - Karthikeyan Subramani
- Organic Chemistry Department
- Science Faculty
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russia
| | - Victor B. Rybakov
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow
- Russia
| | - Alexey V. Varlamov
- Organic Chemistry Department
- Science Faculty
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russia
| | - Rafael Luque
- Organic Chemistry Department
- Science Faculty
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russia
| | - Leonid G. Voskressensky
- Organic Chemistry Department
- Science Faculty
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russia
| |
Collapse
|
24
|
Zhang CH, Huang R, Qing X, Lin J, Yan SJ. Cascade reaction of isatins with nitro-substituted enamines: highly selective synthesis of functionalized (Z)-3-(1-(arylamino)-2-oxoarylidene)indolin-2-ones. Chem Commun (Camb) 2020; 56:3488-3491. [DOI: 10.1039/d0cc00923g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel protocol for the construction of functionalized (Z)-3-(1(-arylamino)-2-oxoarylidene)indolin-2-ones (AOIDOs) from isatins 1 with nitro-substituted enamines 2via an unprecedented cascade reaction catalyzed by sulfamic acid is developed.
Collapse
Affiliation(s)
- Cong-Hai Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Rong Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Xia Qing
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| |
Collapse
|
25
|
Yu Y, Wang XY, Peng JY, Liu T, Zhao YL. Copper-catalyzed cascade cyclization reaction of 3-aminocyclobutenones with electron-deficient internal alkynes: synthesis of fully substituted indoles. Chem Commun (Camb) 2020; 56:9815-9818. [DOI: 10.1039/d0cc00512f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel copper-catalyzed cascade cyclization reaction of 3-aminocyclobutenones with electron-deficient internal alkynes has been developed. This reaction provides a new method for the synthesis of fully substituted indoles by formation of four new bonds and two rings in a single step.
Collapse
Affiliation(s)
- Yang Yu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Xin-Yu Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Ju-Yin Peng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Tao Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|