1
|
Wang C, Liao ZH, Wu R, Chen K, Zhu S. Enantioselective Synthesis of 1-Dihydrobenzazepines through Rh 2(II)-Catalyzed Cycloisomerization of 1,6-Enyne. J Am Chem Soc 2025; 147:10560-10569. [PMID: 40079800 DOI: 10.1021/jacs.5c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The 1-dihydrobenzazepine skeleton has emerged as a privileged structural motif in bioactive molecules. However, due to a lack of asymmetric methodology, access to chiral 1-dihydrobenzazepines has remained limited. Herein, we report the first intermolecular asymmetric cycloisomerization of benzo-fused enynes for the synthesis of chiral 1-dihydrobenzazepines via dirhodium catalysis. This methodology features high efficiency (up to 98% yield), high enantioselectivity (up to 99% ee), and broad scope of nucleophiles, including oxygen nucleophiles (alcohols, phenols, and carboxylic acids) and carbon nucleophiles (silyl enol ethers). Theoretical and experimental mechanistic studies reveal that the reaction pathway encompasses an asymmetric cycloisomerization, which gives rise to a dirhodium carbene containing a donor-acceptor (D-A) cyclopropane moiety, followed by a ring-opening process and stereoselective nucleophilic attack by external nucleophiles on the cyclopropyl ring. Control experiments demonstrate the pivotal role of the terminal group capped on the alkynyl group of substrates in achieving good efficiency.
Collapse
Affiliation(s)
- Chuntao Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Bio-based Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zi-Hao Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Rui Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Bio-based Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shifa Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Bio-based Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| |
Collapse
|
2
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
3
|
Zhuang D, Jiang S, Wang Y, Wang X, Shen S, Yan R. I 2-Mediated [6 + 1] Annulation of Alkynes with MsONH 3OTf: Direct Synthesis of Benzo[ b]azepines. Org Lett 2023; 25:3007-3012. [PMID: 37083284 DOI: 10.1021/acs.orglett.3c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The synthesis of benzo[b]azepines using protonated aminating reagent (MsONH3OTf) and alkynes through I2-mediated [6 + 1] annulation reaction has been developed. This protocol features excellent functional group tolerance and mild reaction conditions and affords the benzo[b]azepines in moderate to good yields under metal-free reaction conditions.
Collapse
Affiliation(s)
- Daijiao Zhuang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Shixuan Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Youzhi Wang
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu, 610041 Sichuan, China
| | - Xiajun Wang
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu, 610041 Sichuan, China
| | - Siwei Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 Gansu, China
| |
Collapse
|
4
|
Ray D, Majee S, Yadav RN, Banik BK. Asymmetric Reactions of N-Phosphonyl/Phosphoryl Imines. Molecules 2023; 28:molecules28083524. [PMID: 37110758 PMCID: PMC10143947 DOI: 10.3390/molecules28083524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The asymmetric reactions of imines continued to attract the attention of the scientific community for decades. However, the stereoselective reactions of N-phosphonyl/phosphoryl imines remained less explored as compared to other N-substituted imines. The chiral auxiliary-based asymmetric-induction strategy with N-phosphonyl imines could effectively generate enantio- and diastereomeric amine, α,β-diamine, and other products through various reactions. On the other hand, the asymmetric approach for the generation of chirality through the utilization of optically active ligands, along with metal catalysts, could be successfully implemented on N-phosphonyl/phosphoryl imines to access numerous synthetically challenging chiral amine scaffolds. The current review critically summarizes and reveals the literature precedence of more than a decade to highlight the major achievements existing to date that can display a clear picture of advancement as well drawbacks in this area.
Collapse
Affiliation(s)
- Devalina Ray
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida 201313, UP, India
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector 125, Noida 201313, UP, India
| | - Suman Majee
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida 201313, UP, India
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector 125, Noida 201313, UP, India
| | - Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering and Technology, Veer Bahadur Singh Purvanchal University, Jaunpur 222003, UP, India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| |
Collapse
|
5
|
Suzuki H, Kondo S, Yamada K, Matsuda T. Diastereo- and Enantioselective Reductive Mannich-type Reaction of α,β-Unsaturated Carboxylic Acids to Ketimines: A Direct Entry to Unprotected β 2,3,3 -Amino Acids. Chemistry 2023; 29:e202202575. [PMID: 36341524 PMCID: PMC10107894 DOI: 10.1002/chem.202202575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Stereoselective construction of unprotected β-amino acids is a significant challenge owing to the lack of methods for the catalytic generation of highly enantioenriched carboxylic acid enolates. In this study, a novel copper-catalyzed diastereo- and enantioselective reductive Mannich-type reaction of α,β-unsaturated carboxylic acids was developed, which provides a direct and scalable synthetic method for enantioenriched β2,3,3 -amino acids with vicinal stereogenic centers. The protocol features in situ generation of transiently protected carboxylic acids by a hydrosilane and their diastereo- and enantioselective reductive coupling with ketimines. The synthetic utility of this process was demonstrated by a gram-scale reaction and the transformation of β-amino acids.
Collapse
Affiliation(s)
- Hirotsugu Suzuki
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagrazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sora Kondo
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagrazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Koichiro Yamada
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagrazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagrazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
6
|
Wang Y, Yin J, Li Y, Yuan X, Xiong T, Zhang Q. Copper-Catalyzed Asymmetric Conjugate Addition of Alkene-Derived Nucleophiles to Alkenyl-Substituted Heteroarenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ying Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - JianJun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yanfei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
7
|
Deng XH, Jiang JX, Jiang Q, Yang T, Chen B, He L, Chu WD, He CY, Liu QZ. CuH-Catalyzed Enantioselective Reductive Coupling of 1,3-Dienes and Trifluoromethyl Ketoimines or α-Iminoacetates. Org Lett 2022; 24:4586-4591. [PMID: 35714047 DOI: 10.1021/acs.orglett.2c01683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intermolecular addition of allylic copper species generated from diene and copper hydride remains elusive. Herein copper hydride catalyzed asymmetric cross reductive coupling of conjugated dienes and ketoimines including trifluoromethyl ketoimines and α-iminoacetates was first achieved using chiral Ph-BPE as the ligand, providing rapid access to structurally and optically enriched homoallylic amines containing two vicinal stereogenic centers with up to 95% yield, 99% ee, and 11:1 diastereoselectivities.
Collapse
Affiliation(s)
- Xue-Hua Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Jia-Xi Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Qin Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Ting Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Bo Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Long He
- College of Chemistry and Materials Engineering, Guiyang University, Guiyang 550005, China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
8
|
Xie X, Sun J. [4+3]-Cycloaddition Reaction of Sulfilimines with Cyclobutenones: Access to Benzazepinones. Org Lett 2021; 23:8921-8925. [PMID: 34723560 DOI: 10.1021/acs.orglett.1c03413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A catalyst-free [4+3]-cycloaddition reaction of N-aryl sulfilimines with cyclobutenones is described, which provides a straightforward protocol for synthesizing 1,5-dihydro-2H-benzo[b]azepin-2-ones under mild reaction conditions. This reaction features a broad substrate scope and good functional group tolerance and does not require catalysts or additives. Moreover, using N-pyridinyl sulfilimine as the substrate, a series of pyridoazepinones have also been prepared.
Collapse
Affiliation(s)
- Xiaozhou Xie
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
9
|
Yoon WS, Han JT, Yun J. Divergent Access to Benzocycles through Copper‐Catalyzed Borylative Cyclizations. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wan Seok Yoon
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| | - Jung Tae Han
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| | - Jaesook Yun
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| |
Collapse
|
10
|
Kanayama K, Sawada A, Suda K, Fujihara T. Copper-Catalyzed Regioselective Sila-Acylation and Silaformylation of 1,3-Dienes Using Esters. J Org Chem 2021; 86:9869-9875. [PMID: 34184898 DOI: 10.1021/acs.joc.1c00945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The regioselective sila-acylation and silaformylation of 1,3-dienes was achieved over a copper catalyst using a silylborane as a silyl source. β,γ-Unsaturated ketones with a (dimethylphenylsilyl)methyl moiety at the α-position were obtained using esters, while β,γ-unsaturated aldehydes were obtained using formate esters.
Collapse
Affiliation(s)
- Kazutaka Kanayama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ayumi Sawada
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Katsushi Suda
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tetsuaki Fujihara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
11
|
Liu X, Wang J, Dong G. Modular Entry to Functionalized Tetrahydrobenzo[ b]azepines via the Palladium/Norbornene Cooperative Catalysis Enabled by a C7-Modified Norbornene. J Am Chem Soc 2021; 143:9991-10004. [PMID: 34161077 PMCID: PMC9142336 DOI: 10.1021/jacs.1c04575] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tetrahydrobenzo[b]azepines (THBAs) are commonly found in many bioactive compounds; however, the modular preparation of functionalized THBAs remains challenging to date. Here, we report a straightforward method to synthesize THBAs directly from simple aryl iodides via palladium/norbornene (Pd/NBE) cooperative catalysis. Capitalizing on an olefin-tethered electrophilic amine reagent, an ortho amination followed by 7-exo-trig Heck cyclization furnishes the seven-membered heterocycle. To overcome the difficulty with ortho-unsubstituted aryl iodide substrates, we discovered a unique C7-bromo-substituted NBE (N1) to offer the desired reactivity and selectivity. In addition to THBAs, synthesis of other benzo-seven-membered ring compounds can also be promoted by N1. Combined experimental and computational studies show that the C7-bromo group in N1 plays an important and versatile role in this catalysis, including promoting β-carbon elimination, suppressing benzocyclobutene formation, and stabilizing reaction intermediates. The mechanistic insights gained could guide future catalyst design. The synthetic utility has been demonstrated in a streamlined synthesis of tolvaptan and forming diverse pharmaceutically relevant THBA derivatives. Finally, a complementary and general catalytic condition to access C6-substituted THBAs from ortho-substituted aryl iodides has also been developed.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jianchun Wang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Xu C, Reep C, Jarvis J, Naumann B, Captain B, Takenaka N. Asymmetric Catalytic Ketimine Mannich Reactions and Related Transformations. Catalysts 2021; 11:712. [PMID: 34745653 PMCID: PMC8570560 DOI: 10.3390/catal11060712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The catalytic enantioselective ketimine Mannich and its related reactions provide direct access to chiral building blocks bearing an α-tertiary amine stereogenic center, a ubiquitous structural motif in nature. Although ketimines are often viewed as challenging electrophiles, various approaches/strategies to circumvent or overcome the adverse properties of ketimines have been developed for these transformations. This review showcases the selected examples that highlight the benefits and utilities of various ketimines and remaining challenges associated with them in the context of Mannich, allylation, and aza-Morita-Baylis-Hillman reactions as well as their variants.
Collapse
Affiliation(s)
- Changgong Xu
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Carlyn Reep
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Jamielyn Jarvis
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Brandon Naumann
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Burjor Captain
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| | - Norito Takenaka
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| |
Collapse
|
13
|
Zhong F, Pan ZZ, Zhou SW, Zhang HJ, Yin L. Copper(I)-Catalyzed Regioselective Asymmetric Addition of 1,4-Pentadiene to Ketones. J Am Chem Soc 2021; 143:4556-4562. [PMID: 33734679 DOI: 10.1021/jacs.1c02084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
By using commercially available 1,4-pentadiene as a pronucleophile, a copper(I)-catalyzed regioselective asymmetric allylation of ketones is achieved. A variety of chiral tertiary alcohols bearing a terminal (Z)-1,3-diene unit are generated in high (Z)/(E) ratio and high enantioselectivity. Both aromatic ketones and aliphatic ketones serve as suitable substrates. Furthermore, the reactions with (E)-C1(alkyl)-1,4-dienes proceed in moderate yields with acceptable enantioselectivity but with low (Z,E)/others ratio, which demonstrates the partial isomerization of (E)-allylcopper(I) species to (Z)-allylcopper(I) species through 1,3-migration. Subsequent Heck reaction and olefin metathesis compensate for the low efficiency with C1-1,4-dienes. The synthetic utility of the product is further demonstrated by a copper(I)-catalyzed regioselective borylation of the 1,3-diene group.
Collapse
Affiliation(s)
- Feng Zhong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhi-Zhou Pan
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Si-Wei Zhou
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hai-Jun Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
14
|
Origin of diastereoselectivity and catalytic efficiency on Isothiourea-mediated cyclization of carboxylic acid with alkenyl ketone. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Acharyya RK, Kim S, Park Y, Han JT, Yun J. Asymmetric Synthesis of 1,2-Dihydronaphthalene-1-ols via Copper-Catalyzed Intramolecular Reductive Cyclization. Org Lett 2020; 22:7897-7902. [PMID: 32991187 DOI: 10.1021/acs.orglett.0c02829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We describe a copper-catalyzed intramolecular reductive cyclization of easily accessible benz-tethered 1,3-dienes containing a ketone moiety. This process provided biologically active 1,2-dihydronaphthalene-1-ol derivatives in good yields with excellent enantio- and diastereoselectivity. Mechanistic investigations using density functional theory revealed that (Z)- and (E)-allylcopper intermediates formed in situ from the diene and copper catalyst undergo isomerization and selective intramolecular allylation of the (E)-allylcopper form of the major product through a six-membered boatlike transition state. The resulting products were further transformed to fully saturated naphthalene-1-ols by reactions of the olefin moiety.
Collapse
Affiliation(s)
| | - Soyoung Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Yeji Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jung Tae Han
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jaesook Yun
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
16
|
Zhou Y, Zhao ZN, Zhang YL, Liu J, Yuan Q, Schneider U, Huang YY. Brønsted Acid-Catalyzed General Petasis Allylation and Isoprenylation of Unactivated Ketones. Chemistry 2020; 26:10259-10264. [PMID: 32432354 DOI: 10.1002/chem.202001594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/19/2020] [Indexed: 11/09/2022]
Abstract
Brønsted acid-catalyzed general Petasis allylation and isoprenylation of unactivated ketones were developed by using o-hydroxyaniline and the corresponding pinacolyl boronic esters. This robust methodology provided access to a broad variety of quaternary homoallylic amines and dienyl amines in high yields, proved to be applicable to a gram-scale synthesis, and allowed the synthesis of a potentially bioactive quaternary homoallylic aminodiol.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhen-Ni Zhao
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yu-Long Zhang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jun Liu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Quan Yuan
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Uwe Schneider
- EaStCHEM School of Chemistry, The University of Edinburgh, The King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Yi-Yong Huang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
17
|
Matsuda Y, Tsuji Y, Fujihara T. Cu-Catalyzed three-component coupling reactions using nitriles, 1,3-dienes and silylboranes. Chem Commun (Camb) 2020; 56:4648-4651. [PMID: 32270164 DOI: 10.1039/d0cc01803a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports novel Cu-catalyzed three-component coupling reactions using nitriles, 1,3-dienes and silylboranes. The desired reactions proceed at room temperature and yield β,γ-unsaturated ketones with a (dimethylphenylsilyl)methyl moiety at the α-position. Diverse nitriles participate in the reaction and the corresponding products were obtained in good to high yields with high regioselectivity.
Collapse
Affiliation(s)
- Yuki Matsuda
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | | | | |
Collapse
|
18
|
Green JC, Zanghi JM, Meek SJ. Diastereo- and Enantioselective Synthesis of Homoallylic Amines Bearing Quaternary Carbon Centers. J Am Chem Soc 2020; 142:1704-1709. [PMID: 31934766 DOI: 10.1021/jacs.9b11529] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A Cu-catalyzed method for the efficient enantio- and diastereoselective synthesis of chiral homoallylic amines bearing a quaternary carbon and an alkenylboron is disclosed. Transformations are promoted by a readily prepared (phosphoramidite)-Cu complex and involve bench-stable γ,γ-disubstituted allyldiborons and benzyl imines; products are obtained in up to 82% yield, >20:1 dr, and >99:1 er. Reactions proceed via stereodefined boron-stabilized allylic Cu species formed by an enantioselective transmetalation. Utility of the 1-amino-3-alkenylboronate products is highlighted by a variety of synthetic transformations.
Collapse
Affiliation(s)
- Jacob C Green
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-3290 , United States
| | - Joseph M Zanghi
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-3290 , United States
| | - Simon J Meek
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-3290 , United States
| |
Collapse
|
19
|
Perry GJP, Jia T, Procter DJ. Copper-Catalyzed Functionalization of 1,3-Dienes: Hydrofunctionalization, Borofunctionalization, and Difunctionalization. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04767] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gregory J. P. Perry
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Tao Jia
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People’s Republic of China
| | - David J. Procter
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|