1
|
Grau BW, Kumar P, Nilsen A, Malhotra SV. Nitrogen-bridgehead compounds: overview, synthesis, and outlook on applications. Org Biomol Chem 2025; 23:1479-1532. [PMID: 39623962 DOI: 10.1039/d4ob01589d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The nitrogen-bridgehead is a common structural motif present in a multitude of natural products. As many of these abundant compounds exhibit biological activities, e.g. against cancer or bacteria, these derivatives are of high interest. While natural products are often associated with problematic characteristics, such as elaborate separation processes, high molecular complexity and limited room for derivatization, purely synthetic approaches can overcome these challenges. Many synthetic procedures have been reported for preparation of artificial nitrogen bridgehead compounds, however, to our surprise only a fraction of these has been tested for their bioactivity. This review is therefore meant to give an overview of existing synthetic methods that provide scaffolds containing bridgehead nitrogen atoms, covering the period from 2000 to 2023. Reviews which cover subunits of this topic are referenced as well.
Collapse
Affiliation(s)
- Benedikt W Grau
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Praveen Kumar
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Nilsen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Sanjay V Malhotra
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Hu Y, Yu HB, Tian Y, Xie MS, Guo HM. Copper(II)-Catalyzed Asymmetric (3+3) Annulation of Diaziridines with Oxiranes. Org Lett 2025; 27:1310-1315. [PMID: 39878925 DOI: 10.1021/acs.orglett.5c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Highly asymmetric (3+3) annulation of diaziridines with oxiranes via C-N bond cleavage in diaziridine was achieved under 10 mol % of chiral copper(II) complex as the catalyst under mild reaction conditions. With Cu(OTf)2 as the Lewis acid and C1-symmetric imidazolidine-pyrroloimidazolone pyridine as the ligand, diverse tetrahydro-[1,3,4]-oxadiazines were obtained by stereospecific C-N/C-O bond formation in moderate to good yields (up to 93% yield) and high diastereo- (>20:1 dr) and enantioselectivities (up to 92% ee). The catalytic cycle and stereochemical model were proposed by DFT calculation.
Collapse
Affiliation(s)
- Ying Hu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Heng-Bin Yu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ming-Sheng Xie
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
He HX, Wu F, Zhang X, Feng JJ. Ring Expansion toward Fused Diazabicyclo[3.1.1]heptanes through Lewis Acid Catalyzed Highly Selective C-C/C-N Bond Cross-Exchange Reaction between Bicyclobutanes and Diaziridines. Angew Chem Int Ed Engl 2025; 64:e202416741. [PMID: 39532666 DOI: 10.1002/anie.202416741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
The synthesis of bicyclic scaffolds has garnered considerable interest in drug discovery because of their ability to mimic benzene bioisosteres. Herein, we introduce a new approach that utilizes a Lewis acid (Sc(OTf)3)-catalyzed σ-bond cross-exchange reaction between the C-C bond of bicyclobutanes and the C-N bond of diaziridines to produce multifunctionalized and medicinally interesting azabicyclo[3.1.1]heptane derivatives. The reaction proceeds well with different bicyclobutanes and a broad range of aryl- as well as alkenyl-, but also alkyl-substituted diaziridines (up to 98 % yield). Conducting a scale-up experiment and exploring the synthetic transformations of the cycloadducts emphasized the practical application of the synthesis. Furthermore, a zinc-based chiral Lewis acid catalytic system was developed for the enantioselective version of this reaction (up to 96 % ee).
Collapse
Affiliation(s)
- Heng-Xian He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, 225002, Yangzhou, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| |
Collapse
|
4
|
Jeong J, Cao S, Kang HJ, Yoon H, Lee J, Shin S, Kim D, Hong S. Divergent Enantioselective Access to Diverse Chiral Compounds from Bicyclo[1.1.0]butanes and α,β-Unsaturated Ketones under Catalyst Control. J Am Chem Soc 2024; 146:27830-27842. [PMID: 39348293 DOI: 10.1021/jacs.4c10153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Achieving structural and stereogenic diversity from the same starting materials remains a fundamental challenge in organic synthesis, requiring precise control over the selectivity. Here, we report divergent catalytic methods that selectively yield either cycloaddition or addition/elimination products from bicyclo[1.1.0]butanes and α,β-unsaturated ketones. By employing chiral Lewis acid or Brønsted acid catalysts, we achieved excellent regio-, diastereo-, and enantioselectivity across all three distinct transformations, affording a diverse array of synthetically valuable chiral bicyclo[2.1.1]hexanes and cyclobutenes. The divergent outcomes are controlled by the differential activation of the substrates by the specific chiral catalyst with the reaction conditions dictating the pathway selectivity. This strategy demonstrates the power of divergent catalysis in creating molecular complexity and diversity, offering a valuable tool for the synthesis of enantioenriched chiral building blocks.
Collapse
Affiliation(s)
- Jinwook Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Shi Cao
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Hyung-Joon Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Heeseong Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jaebin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sanghoon Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
5
|
Samantaray S, Maharana PK, Kar S, Saha S, Punniyamurthy T. Redox-neutral zinc-catalyzed cascade [1,4]-H shift/annulation of diaziridines with donor-acceptor aziridines. Chem Commun (Camb) 2024; 60:3441-3444. [PMID: 38445334 DOI: 10.1039/d4cc00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The coupling of diaziridines with donor-acceptor aziridines (DAAs) has been achieved using Zn-catalysis to furnish imidazopyrazole-4,4-dicarboxylates via [1,4]-hydride shift. The use of Zn-catalysis, [1,4]-hydride shift, natural product modification and a late-stage molecular docking study are important practical features.
Collapse
Affiliation(s)
- Swati Samantaray
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Subhradeep Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
6
|
Ma Z, Wu X, Li H, Cao Z, Zhu C. Access to pyrrolines and fused diaziridines by selective radical addition to homoallylic diazirines. Chem Sci 2024; 15:1879-1884. [PMID: 38303955 PMCID: PMC10829008 DOI: 10.1039/d3sc04886a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024] Open
Abstract
Pyrroline derivatives are common in bioactive natural products and therapeutic agents. We report here a synthesis of pyrrolines and fused diaziridines by divergent radical cyclization of homoallylic diazirines, which can serve as an internal radical trap and a nitrogen source. This reaction proceeds by selective radical addition to C[double bond, length as m-dash]C or N[double bond, length as m-dash]N bonds followed by intramolecular cyclization. Frontier molecular orbital analysis provides a deep insight into the origin of the selectivity. The reaction demonstrates a new cyclization mode, broad functional group compatibility and high product diversity, and reveals a much broader chemical space for diazirine studies.
Collapse
Affiliation(s)
- Zhigang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Haotian Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Zhu Cao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
7
|
Karjee P, Mandal S, Debnath B, Namdev N, Punniyamurthy T. Expedient (3+3)-annulation of in situ generated azaoxyallyl cations with diaziridines. Chem Commun (Camb) 2023. [PMID: 37317582 DOI: 10.1039/d3cc02136j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Efficient annulation of in situ formed azaoxyallyl cations using a base has been accomplished with diaziridines to provide 1,2,4-triazines at room temperature. The substrate scope, scale up, functional group tolerance and transition-metal free reaction conditions are the important practical features.
Collapse
Affiliation(s)
- Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Nirali Namdev
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
8
|
Belyakov AV, Kuznetsov VV, Shimanskaya GS, Rykov AN, Goloveshkin AS, Novakovskaya YV, Shishkov IF. Molecular structure of 1,1',6,6'-tetraaza-7,7'-bi(bicyclo[4.1.0]heptane) in gas, solid and solution phases: GED, XRD and NMR data combined with quantum chemical calculations. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Kuznetsov V, Khakimov D, Dmitrenok A, Goloveshkin A. Synthesis, structure and peculiarity of conformational behavior of 1,5-diazabicyclo[3.1.0]hexanes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Marochkin II, Altova EP, Kuznetsov VV, Rykov AN, Shishkov IF. Molecular structure of 6-cyclopropyl-1,5-diazabicyclo[3.1.0]hexane: gas phase electron diffraction and theoretical study. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Kumar B, Babu JN, Chowhan LR. Sustainable Synthesis of Highly Diastereoselective & Fluorescent Active Spirooxindoles Catalyzed by Copper Oxide Nanoparticle Immobilized on Microcrystalline Cellulose. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bhupender Kumar
- School for Applied Material Sciences Central University of Gujarat, Sector 30 Gandhinagar Gujarat India
| | - J. Nagendra Babu
- Department of Chemistry School for Basic and Applied Sciences, Central University of Punjab, VPO Ghudda Bathinda Punjab India
| | - L. Raju Chowhan
- School for Applied Material Sciences Central University of Gujarat, Sector 30 Gandhinagar Gujarat India
| |
Collapse
|
12
|
Tachrim ZP, Wang L, Murai Y, Hashimoto M. New Trends in Diaziridine Formation and Transformation (a Review). Molecules 2021; 26:4496. [PMID: 34361648 PMCID: PMC8348119 DOI: 10.3390/molecules26154496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023] Open
Abstract
This review focuses on diaziridine, a high strained three-membered heterocycle with two nitrogen atoms that plays an important role as one of the most important precursors of diazirine photoaffinity probes, as well as their formation and transformation. Recent research trends can be grouped into three categories, based on whether they have examined non-substituted, N-monosubstituted, or N,N-disubstituted diaziridines. The discussion expands on the conventional methods for recent applications, the current spread of studies, and the unconventional synthesis approaches arising over the last decade of publications.
Collapse
Affiliation(s)
- Zetryana Puteri Tachrim
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (L.W.); (Y.M.)
- Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan Puspiptek, Serpong, South Tangerang 15314, Banten, Indonesia
| | - Lei Wang
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (L.W.); (Y.M.)
- State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuta Murai
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (L.W.); (Y.M.)
- Frontier Research Center for Post-Genome Science and Technology, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo 001-0021, Japan
| | - Makoto Hashimoto
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan; (L.W.); (Y.M.)
| |
Collapse
|
13
|
Xu J, Song Y, He J, Dong S, Lin L, Feng X. Asymmetric Catalytic Vinylogous Addition Reactions Initiated by Meinwald Rearrangement of Vinyl Epoxides. Angew Chem Int Ed Engl 2021; 60:14521-14527. [PMID: 33826200 DOI: 10.1002/anie.202102054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 11/08/2022]
Abstract
The first catalytic asymmetric multiple vinylogous addition reactions initiated by Meinwald rearrangement of vinyl epoxides were realized by employing chiral N,N'-dioxide/ScIII complex catalysts. The vinyl epoxides, as masked β,γ-unsaturated aldehydes, via direct vinylogous additions with isatins, 2-alkenoylpyridines or methyleneindolinones, provided a facile and efficient way for the synthesis of chiral 3-hydroxy-3-substituted oxindoles, α,β-unsaturated aldehydes and spiro-cyclohexene indolinones, respectively with high efficiency and stereoselectivity. The control experiments and kinetic studies revealed that the Lewis acid acted as dual-tasking catalyst, controlling the initial rearrangement to match subsequent enantioselective vinylogous addition reactions. A catalytic cycle with a possible transition model was proposed to illustrate the reaction mechanism.
Collapse
Affiliation(s)
- Jinxiu Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yanji Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Jun He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
14
|
Xu J, Song Y, He J, Dong S, Lin L, Feng X. Asymmetric Catalytic Vinylogous Addition Reactions Initiated by Meinwald Rearrangement of Vinyl Epoxides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jinxiu Xu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Yanji Song
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Jun He
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
15
|
Wen D, Zheng Q, Wang C, Tu T. Rare-Earth-Catalyzed Transsulfinamidation of Sulfinamides with Amines. Org Lett 2021; 23:3718-3723. [PMID: 33881895 DOI: 10.1021/acs.orglett.1c01106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A rare-earth-catalyzed transsulfinamidation of primary sulfinamides with alkyl, aryl, and heterocyclic amines for the synthesis of diverse secondary and tertiary sulfinamides has been realized. Unlike transition metal-catalyzed cross-coupling approaches restricted to non-commercially available disubstituted O-benzoyl hydroxylamines, this newly developed protocol is suitable for diverse readily available primary and secondary amines without any modifications. Excellent catalytic activity and selectivity are achieved with Eu(OTf)3 under mild reaction conditions, which extends the applicability of rare-earth catalysis.
Collapse
Affiliation(s)
- Daheng Wen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Chaoyu Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Hayatgheybi S, Khosravi H, Zahedian Tejeneki H, Rominger F, Bijanzadeh HR, Balalaie S. Synthesis of N-(Isoquinolin-1-yl)sulfonamides via Ag 2O-Catalyzed Tandem Reaction of ortho-Alkynylbenzaldoximes with Benchtop Stabilized Ketenimines. Org Lett 2021; 23:3524-3529. [PMID: 33851841 DOI: 10.1021/acs.orglett.1c00937] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this project, a moderately efficient approach to multisubstituted N-(isoquinolin-1-yl)sulfonamide derivatives was illustrated, utilizing ortho-alkynylbenzaldoximes and zwitterionic ketenimine salts in a tandem reaction catalyzed by silver oxide. The oxophilicity of Ag2O, along with its nature as Lewis acid, pave the way for a smooth [3 + 2] cycloaddition between isoquinoline N-oxides and ketenimine species, which is a key step in this reaction. DFT calculation suggests that 1,3-dipolar cycloaddition of nitrone and ketenimine proceeds through a selective stepwise mechanism.
Collapse
Affiliation(s)
- Sepideh Hayatgheybi
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697-64499 Tehran, Iran
| | - Hormoz Khosravi
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697-64499 Tehran, Iran
| | - Hossein Zahedian Tejeneki
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697-64499 Tehran, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universitaet Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697-64499 Tehran, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, 67158-47141 Kermanshah, Iran
| |
Collapse
|
17
|
Cortes Vazquez J, Davis J, Nesterov VN, Wang H, Luo W. Sc(OTf) 3-Catalyzed Formal [3 + 3] Cycloaddition Reaction of Diaziridines and Quinones for the Synthesis of Benzo[ e][1,3,4]oxadiazines. Org Lett 2021; 23:3136-3140. [PMID: 33819425 DOI: 10.1021/acs.orglett.1c00818] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A formal [3 + 3] cyclization reaction of diaziridines and quinones has been developed offering 1,3,4-oxadiazinanes in generally high yields (up to 96%). The reaction was catalyzed by Sc(OTf)3 with a large substrate scope for both diaziridines and quinones. The synergistic activation of 1,3-dipolar diaziridines and the dipolar quinones was found to be essential to enable this reaction.
Collapse
Affiliation(s)
- Jose Cortes Vazquez
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Jacqkis Davis
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Vladimir N Nesterov
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Hong Wang
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Weiwei Luo
- Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| |
Collapse
|
18
|
Ravindra S, Irfana Jesin CP, Shabashini A, Nandi GC. Recent Advances in the Preparations and Synthetic Applications of Oxaziridines and Diaziridines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sundaresan Ravindra
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015, Tamilnadu India
| | - C. P. Irfana Jesin
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015, Tamilnadu India
| | - Arivalagan Shabashini
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015, Tamilnadu India
| | - Ganesh Chandra Nandi
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015, Tamilnadu India
| |
Collapse
|
19
|
Tan F, Pu M, He J, Li J, Yang J, Dong S, Liu X, Wu YD, Feng X. Catalytic Asymmetric Homologation of Ketones with α-Alkyl α-Diazo Esters. J Am Chem Soc 2021; 143:2394-2402. [PMID: 33507075 DOI: 10.1021/jacs.0c12683] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The homologation of ketones with diazo compounds is a useful strategy to synthesize one-carbon chain-extended acyclic ketones or ring-expanded cyclic ketones. However, the asymmetric homologation of acyclic ketones with α-diazo esters remains a challenge due to the lower reactivity and complicated selectivity. Herein, we report the enantioselective catalytic homologation of acetophenone and related derivatives with α-alkyl α-diazo esters utilizing a chiral scandium(III) N,N'-dioxide as the Lewis acid catalyst. This reaction supplies a highly chemo-, regio-, and enantioselective pathway for the synthesis of optically active β-keto esters with an all-carbon quaternary center through highly selective alkyl-group migration of the ketones. Moreover, the ring expansion of cyclic ketones was accomplished under slightly modified conditions, affording a series of enantioenriched cyclic β-keto esters. Density functional theory calculations have been carried out to elucidate the reaction pathway and possible working models that can explain the observed regio- and enantioselectivity.
Collapse
Affiliation(s)
- Fei Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Shenzhen 518055, People's Republic of China
| | - Jun He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jian Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen 518055, People's Republic of China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
20
|
Molecular structure of 1,2-diethyldiaziridine studied by gas electron diffraction supported by quantum chemistry calculations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Li S, Lu H, Xu Z, Wei F. Ni-Catalyzed asymmetric hetero-Diels–Alder reactions of conjugated vinyl azides: synthesis of chiral azido polycycles. Org Chem Front 2021. [DOI: 10.1039/d0qo01597k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report herein an efficient Ni(ii)/Feng ligand-catalyzed asymmetric hetero-Diels–Alder reaction between conjugated vinyl azides with carbonyl groups, providing a synthesis of complicated chiral azido polycycles in high yields and excellent enantioselectivities.
Collapse
Affiliation(s)
- Shunian Li
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- People's Republic of China
| | - Haifeng Lu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- People's Republic of China
| | - Zhenghu Xu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- People's Republic of China
- State Key Laboratory of Organometallic Chemistry
| | - Fang Wei
- Key Laboratory of Organic Chemistry in Jiangxi Province
- Institute of Organic Chemistry
- Jiangxi Science & Technology Normal University
- Nanchang 330013
- People's Republic of China
| |
Collapse
|
22
|
Molchanov AP, Efremova MM, Kryukova MA, Kuznetsov MA. Selective and reversible 1,3-dipolar cycloaddition of 6-aryl-1,5-diazabicyclo[3.1.0]hexanes with 1,3-diphenylprop-2-en-1-ones under microwave irradiation. Beilstein J Org Chem 2020; 16:2679-2686. [PMID: 33178358 PMCID: PMC7607433 DOI: 10.3762/bjoc.16.218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
The first example of the cycloaddition of in situ-generated azomethine imine under microwave conditions is described. The reaction of 6-aryl-1,5-diazabicyclo[3.1.0]hexanes with 1,3-diphenylprop-2-en-1-ones proceeds regio- and stereoselectively giving mostly good yields of the corresponding perhydropyrazolopyrazoles. The products of the reaction undergo cycloreversion under the reaction conditions.
Collapse
Affiliation(s)
- Alexander P Molchanov
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Mariia M Efremova
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Mariya A Kryukova
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Mikhail A Kuznetsov
- Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| |
Collapse
|
23
|
Wang H, Zeng T, Li X, Wang S, Xiao W, Liu L, Chang W, Li J. Cocatalyst-controlled divergent cascade cycloaddition reaction of arylalkynols and dioxopyrrolidienes: access to spiroketals and oxa-bridged eight-membered cyclic ethers. Org Chem Front 2020. [DOI: 10.1039/d0qo00464b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A cocatalyst-controlled divergent cascade cycloaddition reaction was developed for the synthesis of two different complex oxygen-containing heterocyclic compounds from arylalkynols and dioxopyrrolidienes in the presence of Au(i) catalyst.
Collapse
Affiliation(s)
- Hongkai Wang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Tianlong Zeng
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Xinhong Li
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Songmeng Wang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Weiguo Xiao
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Lingyan Liu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Weixing Chang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Jing Li
- The State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
24
|
Yue G, Dou Z, Zhou Z, Zhang L, Feng J, Chen H, Yin Z, Song X, Liang X, Wang X, Rao H, Lu C. Rapid abnormal [3+2]-cycloaddition of isatin N,N′-cyclic azomethine imine 1,3-dipoles with chalcones. NEW J CHEM 2020. [DOI: 10.1039/d0nj00887g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
More than 35 new compounds were prepared rapidly in moderate to excellent yields with high diastereoselectivities by K2CO3-promoted abnormal 1,3-diploar cycloaddition of isatin N, N′-cyclic azomethine imines with chalcones.
Collapse
|