1
|
Jin F, Wu Q, Wu S, Dong H, He Y, Sun J, Yan CG, Li W, Wang L. Palladium-Catalyzed Domino Carboetherification Reactions: Synthesis of Bis-Heterocycles Bearing Isoxazoline and Methyleneindole Motifs. J Org Chem 2025; 90:742-752. [PMID: 39692079 DOI: 10.1021/acs.joc.4c02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A novel and highly efficient Pd-catalyzed approach for the synthesis of bis-heterocycles featuring both isoxazoline and methyleneindole motifs is demonstrated. The in situ formation of vinyl Pd(II) species through an alkyne-tethered carbamoyl chloride cyclization is crucial, and the innovative Pd-catalyzed carboetherification of β,γ-unsaturated oximes with vinyl Pd(II) species has been developed. This method is not only operationally straightforward but also exhibits a broad substrate scope and excellent functional group tolerance.
Collapse
Affiliation(s)
- Feifei Jin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Qing Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shuaijie Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Huiwen Dong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yanru He
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jing Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Chao-Guo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200062 Shanghai, P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
2
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
3
|
Wu S, Zhang S, Sun J, Han Y, Wang Y, Yan CG, Wang L. Synthesis of Multisubstituted Allenes by Palladium-Catalyzed Carboetherification of β,γ-Unsaturated Ketoximes with Propargylic Acetates. Org Lett 2023. [PMID: 37335881 DOI: 10.1021/acs.orglett.3c01561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
A highly efficient Pd-catalyzed carboetherification reaction of β,γ-unsaturated ketoximes with propargylic acetates is demonstrated. This method provides a practical protocol for accessing the incorporation of an allene moiety into 3,5-disubstituted and 3,5,5-trisubstituted isoxazolines. The salient features of this transformation include a broad substrate scope, good functional group tolerance, an easy scale-up, versatile transformations, and applications in the late-stage modification of drugs.
Collapse
Affiliation(s)
- Shuaijie Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shuting Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jing Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yidong Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Chao-Guo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Lei Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
4
|
Zhao C, Dong A, Ju D, Huang J, Jia R, Liu Y, Zhao J. Pd‐Catalyzed Coupling Cyclization of δ, ϵ‐Alkenyl Oxime toward Access to 1,2‐Oxezapines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chuang Zhao
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
| | - Ah‐Ying Dong
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
| | - Dongyan Ju
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
| | - Jianhong Huang
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
| | - Ran Jia
- Department of theoretical chemistry Jilin University Changchun Jilin 130023 P. R. China
| | - Yu Liu
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
| | - Jinbo Zhao
- Faculty of Chemistry and Life Science Changchun University of Technology 2055 Yan'an Street Changchun Jilin 130012 P. R. China
- College of Pharmacy Shandong First Medical University & Shandong Academy of Medical Sciences Tai-An Shandong 271016 P. R. China
| |
Collapse
|
5
|
Singh J, Nelson TJ, Mansfield SA, Nickel GA, Cai Y, Jones DD, Small JE, Ess DH, Castle SL. Microwave- and Thermally Promoted Iminyl Radical Cyclizations: A Versatile Method for the Synthesis of Functionalized Pyrrolines. J Org Chem 2022; 87:16250-16262. [PMID: 36472924 DOI: 10.1021/acs.joc.2c01806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A detailed study of iminyl radical cyclizations of O-aryloximes tethered to alkenes is reported. The reactions can be triggered by either microwave irradiation or conventional heating in an oil bath. A variety of radical traps can be employed, enabling C-C, C-N, C-O, C-S, or C-X bond formation and producing a diverse array of functionalized pyrrolines. Substrates containing an allylic sulfide furnish terminal alkenes by a tandem cyclization-thiyl radical β-elimination pathway. Cyclizations of hydroxylated substrates exhibit moderate diastereoselectivity that in some cases can partially be attributed to intramolecular hydrogen bonding. Computational studies suggested a possible role for thermodynamics in controlling the stereochemistry of cyclizations. The reaction temperature can be lowered from 120 to 100 °C by employing O-(p-tert-butylphenyl)oximes instead of O-phenyloximes as substrates, and these second-generation iminyl radical precursors can be used in a one-pot oxime ether formation-cyclization that is promoted by conventional heating. The functionalized pyrrolines obtained from these reactions can be conveniently transformed in several different ways.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Tanner J Nelson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Samuel A Mansfield
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Garrison A Nickel
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Yu Cai
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Dakota D Jones
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Jeshurun E Small
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Steven L Castle
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
6
|
Liu X, Wang Y, Wu S, Jiang W, Zeng R, Cao H. Four-Component Cyclization of Naphthol/Thionaphthol/Naphthylamine, Formaldehyde, and DBU in Water. J Org Chem 2022; 87:13819-13827. [PMID: 36223276 DOI: 10.1021/acs.joc.2c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A practical and environmentally benign cascade multicomponent condensation of naphthol/thionaphthol/naphthylamine, formaldehyde, and DBU in water without any catalysts has been achieved. A wide variety of dihydrooxazine, dihydrothiazine, and tetrahydrobenzoquinazoline derivatives N-substituted with a tether bearing a caprolactam unit were afforded in moderate to good yields. The advantages of being cost-effective, metal-free, and easily handled and the use of water as medium made this protocol conform with the principle of green synthesis.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Yuhan Wang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Songxin Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Wenxuan Jiang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Ruyi Zeng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| |
Collapse
|
7
|
Murtinho D, Elisa da Silva Serra M. Transition Metal Catalysis in Synthetic Heterocyclic Chemistry. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Lukoyanov AA, Tabolin AA, Nelyubina YV, Ioffe SL, Sukhorukov AY. Deoxygenative Arylation of 5,6-Dihydro-4 H-1,2-oxazine- N-oxides with Arynes. J Org Chem 2022; 87:6838-6851. [PMID: 35523000 DOI: 10.1021/acs.joc.2c00515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Six-membered cyclic nitronates (5,6-dihydro-4H-1,2-oxazine-N-oxides) react with Kobayashi's aryne precursors producing 3-(2-hydroxyaryl)-substituted 1,2-oxazines via deoxygenative C-H arylation. The process involves a hitherto unknown 1,3-dipolar cycloaddition of nitronate to the aryne to give an unusual tricyclic nitroso acetal, in which the N-O bond of the isoxazoline ring is selectively cleaved upon the action of a base (CsF) or an acid (TFA). The transient cycloadducts were isolated and characterized in some cases. The synthetic potential of the obtained 3-(2-hydroxyaryl)-substituted 1,2-oxazines was demonstrated by their stereoselective reduction to 1,4-amino alcohols and reductive 1,2-oxazine ring contraction to tetrahydrofuran derivatives.
Collapse
Affiliation(s)
- Alexander A Lukoyanov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow 119991, Russian Federation
| | - Andrey A Tabolin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow 119991, Russian Federation
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Vavilov strasse 28, Moscow 119991, Russian Federation
| | - Sema L Ioffe
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow 119991, Russian Federation
| | - Alexey Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow 119991, Russian Federation
| |
Collapse
|
9
|
Han H, Li C, Niu X, Wang Y, Zhang W, Wang Q. A combination of polarity reversal, Diels-Alder cycloaddition and skeletal remodeling to access pyridine-fused nitrones. Chem Commun (Camb) 2022; 58:4775-4778. [PMID: 35343540 DOI: 10.1039/d2cc00155a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An unprecedented cascade strategy consisting of polarity reversal, normal electron-demand Diels-Alder cycloaddition and skeletal remodeling was developed to construct novel pyridine-fused nitrones in up to 82% yield. The key to the success was the umpolung process, which transformed the electron-deficient 3-nitropyridinium ring into a reactive, π-extended cyclic nitroalkene, serving as a rarely reported hetero-diene to participate in normal Diels-Alder cycloadditions.
Collapse
Affiliation(s)
- Huabin Han
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Chaoyang Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Xinyue Niu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yuxia Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Wenjing Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Qilin Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
10
|
Sandmeier T, Carreira EM. Enantio- and Chemoselective Intramolecular Iridium-Catalyzed O-Allylation of Oximes. Org Lett 2021; 23:2643-2647. [PMID: 33749284 DOI: 10.1021/acs.orglett.1c00559] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A method for the enantio- and chemoselective iridium-catalyzed O-allylation of oximes is described. Kinetic resolution in an intramolecular setting provides enantioenriched oxime ethers and aliphatic allylic alcohols. The synthetic potential of the products generated with this method is showcased by their elaboration into a series of heterocyclic compounds and the formal synthesis of glycoprotein GP IIb-IIIa receptor antagonist (-)-roxifiban. Preliminary mechanistic experiments and computational data shed light on the remarkable chemoselectivity of the reaction.
Collapse
Affiliation(s)
- Tobias Sandmeier
- Eidgenössische Technische Hochschule (ETH) Zürich, Building HCI, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Erick M Carreira
- Eidgenössische Technische Hochschule (ETH) Zürich, Building HCI, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
11
|
|