1
|
Huynh TN, Tran DT, Nguyen TT. Elemental sulfur promoted condensation of indoles and 1,2-phenylenediamines. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
2
|
He D, Wang B, Duan K, Zhou Y, Li M, Jiang H, Wu W. Synthesis of Densely Substituted Pyridine Derivatives from 1-Methyl-1,3-(ar)enynes and Nitriles by a Formal [4+2] Cycloaddition Reaction. Org Lett 2022; 24:1292-1297. [PMID: 35112870 DOI: 10.1021/acs.orglett.1c04192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An attractive method for assembling densely substituted pyridine derivatives from 1-methyl-1,3-(ar)enynes and nitriles via a formal [4+2] cycloaddition has been established. The well-balanced affinities of two alkali metal salts enable C(sp3)-H bond activation and excellent chemo- and regioselectivities. Experimental studies revealed that nitrile functions only as a partial nitrogen source for pyridine synthesis, and the addition of a metalated imine intermediate to an intramolecular alkyne is the rate-limiting step.
Collapse
Affiliation(s)
- Dandan He
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Bowen Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Kanghui Duan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yang Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Meng Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Wanqing Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
3
|
Ghosh A, Hegde RV, Rode HB, Ambre R, Mane MV, Patil SA, Sridhar B, Dateer RB. Catalyst- and Additive-Free Approach to Constructing Benzo-oxazine, Benzo-oxazepine, and Benzo-oxazocine: O Atom Transfer and C═O, C-N, and C-O Bond Formation at Room Temperature. Org Lett 2021; 23:8189-8193. [PMID: 34643397 DOI: 10.1021/acs.orglett.1c02895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An exclusive synthesis of benzo-oxazine, benzo-oxazepine, and benzo-oxazocine from aryl propanal and 2-(hydroxyamino)phenyl alcohol under metal-free conditions is described. O atom transfer and formation of new C═O, C-N, and C-O bonds occur at room temperature to form six-, seven-, and eight-membered heterocycles under one-pot reaction conditions without using an external oxidant and base. The photophysical properties are studied using ultraviolet-visible absorption and photoluminescence. The mechanistic elucidation is well supported by control experiment and literature precedents.
Collapse
Affiliation(s)
- Arnab Ghosh
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Rajeev V Hegde
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Haridas B Rode
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Ram Ambre
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan, Republic of China
| | - Manoj V Mane
- KAUST Catalysis Centre, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Siddappa A Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Balasubramanian Sridhar
- Center for X-ray Crystallography Analytical Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
| | - Ramesh B Dateer
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| |
Collapse
|
4
|
Bhattacharya A, Thirupathi A, Natarajan P, Peruncheralathan S. Chemoselective Ullmann Reaction of α-Trisubstituted Thioamides: Synthesis of Novel 2-Iminobenzothiolanes. ACS OMEGA 2021; 6:21169-21180. [PMID: 34423225 PMCID: PMC8375098 DOI: 10.1021/acsomega.1c03410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
New classes of unexplored benzo[b]thiolanes are synthesized from trisubstituted thioamides through copper-catalyzed intramolecular S-arylation of thioamides for the first time. This method provides good to excellent yields with fully controlled chemoselectivity. Unusually, iminobenzo[b]thiolanes are very stable under mild acidic conditions. A plausible mechanism is proposed for the chemoselective S-arylation process.
Collapse
|
5
|
Avadhani A, Iniyavan P, Kumar Y, Ila H. Single-Pot Preparation of 4-Amino-2-(het)aryl-5-Substituted Thiazoles Employing Functionalized Dithioesters as Thiocarbonyl Precursors. J Org Chem 2021; 86:8508-8515. [PMID: 34107686 DOI: 10.1021/acs.joc.1c00616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An effective, diversity oriented, one-pot reaction of 4-amino-2-(het)aryl/alkyl-5-functionalized thiazoles has been disclosed, utilizing aryl/heteroaryl/alkyl dithioesters as thiocarbonyl coupling partners in a modified Thorpe-Ziegler type cyclization. The reaction proceeds at room temperature, under mild conditions, in excellent yields, displaying broad functional group compatibility at 2 and 5 positions of thiazoles. This synthetic strategy has been further expanded for the one-pot construction of two highly potent tubulin polymerization inhibitors, i.e., 2-(het)aryl-4-amino-5-(3,4,5-trimethoxyaroyl) thiazoles, in high yields.
Collapse
Affiliation(s)
- Anusha Avadhani
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Pethaperumal Iniyavan
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Yogendra Kumar
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Hiriyakkanavar Ila
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
6
|
Sundaravelu N, Sangeetha S, Sekar G. Metal-catalyzed C-S bond formation using sulfur surrogates. Org Biomol Chem 2021; 19:1459-1482. [PMID: 33528480 DOI: 10.1039/d0ob02320e] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sulfur-containing compounds are present in a wide range of biologically important natural products, drugs, catalysts, and ligands and they have wide applications in material chemistry. Transition metal-catalyzed C-S bond-forming reactions have successfully overcome the obstacles associated with traditional organosulfur compound syntheses such as stoichiometric use of metal-catalysts, catalyst-poisoning and harsh reaction conditions. One of the key demands in metal-catalyzed C-S bond-forming reactions is the use of an appropriate sulfur source due to its odor and availability. The unpleasant odor of many organic sulfur sources might be one of the reasons for the metal-catalyzed C-S bond-forming reactions being less explored compared to other metal-catalyzed C-heteroatom bond-forming reactions. Hence, employing an appropriate sulfur surrogate in the synthesis of organosulfur compounds in metal-catalyzed reactions is still of prime interest for chemists. This review explores the recent advances in C-S bond formation using transition metal-catalyzed cross-coupling reactions and C-H bond functionalization using diverse and commercially available sulfur surrogates. Based on the different transition metal-catalysts, this review has been divided into three major classes namely (1) palladium-catalyzed C-S bond formation, (2) copper-catalyzed C-S bond formation, and (3) other metal-catalyzed C-S bond formation. This review is further arranged based on the different sulfur surrogates. Also, this review provides an insight into the growing opportunities in the construction of complex organosulfur scaffolds covering natural product synthesis and functional materials.
Collapse
Affiliation(s)
- Nallappan Sundaravelu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Subramani Sangeetha
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Govindasamy Sekar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| |
Collapse
|
7
|
Tang Q, Yin X, Kuchukulla RR, Zeng Q. Recent Advances in Multicomponent Reactions with Organic and Inorganic Sulfur Compounds. CHEM REC 2021; 21:893-905. [DOI: 10.1002/tcr.202100026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Qinqin Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| | - Xianjie Yin
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| | - Ratnakar Reddy Kuchukulla
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
- College of Environment and Ecology Chengdu University of Technology Chengdu 610059 China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| |
Collapse
|
8
|
Sharma S, Malakar CC, Singh V. Transition‐Metal‐Free C‐S Bond Forming Strategy towards Synthesis of Highly Diverse Pyrazole Tethered Benzothiazoles: Investigation of their Photophysical Properties. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shubham Sharma
- Shubham Sharma Dr. Virender Singh Department of Chemistry Dr B R Ambedkar National Institute of Technology Jalandhar Punjab 144011 India
| | - Chandi C. Malakar
- Dr. Chandi C. Malakar Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 India
| | - Virender Singh
- Shubham Sharma Dr. Virender Singh Department of Chemistry Dr B R Ambedkar National Institute of Technology Jalandhar Punjab 144011 India
- Dr. Virender Singh Department of Chemistry Central University of Punjab Bathinda Punjab 151001 India
| |
Collapse
|
9
|
Deng GJ, Huang H, Liu S. Recent Advances in Sulfur-Containing Heterocycle Formation via Direct C–H Sulfuration with Elemental Sulfur. Synlett 2020. [DOI: 10.1055/s-0040-1707217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The synthesis of sulfur heterocycles via the construction of C–S bonds has received considerable attention due to their biological value and extensive pharmaceutical application. While diverse sulfurating agents have been developed over the past few decades, in this regard, elemental sulfur, with advantages of low toxicity, odorless nature and chemical stability, has great potential for the construction of diverse sulfur heterocycles through its direct incorporation into the target molecules in a concise way. Direct functionalization of inert C–H bonds can shorten the number of reaction steps and minimize the amount of waste formed. Hence, heteroannulations via direct C–H sulfuration is considered to be an attractive strategy for the synthesis of sulfur heterocycles. In the last few years, a vast array of concise systems have been reported for the synthesis of some valuable sulfur heterocycles such as thiophenes, thienoindoles, thienothiazoles, thiazoles, benzothiazoles, and thiadiazoles through direct C–H sulfuration/annulations with elemental sulfur. These are discussed in detail in this review.1 Introduction2 Thiophenes3 Thienoindoles4 Thienothiazoles5 Other Fused Thiophenes6 Thiazoles7 Benzothiazoles8 Thiadiazoles9 Others10 Summary and Outlook
Collapse
Affiliation(s)
- Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University
| | - Saiwen Liu
- College of Materials and Chemical Engineering, Hunan City University
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University
| |
Collapse
|
10
|
Nguyen TB. Recent Advances in the Synthesis of Heterocycles via Reactions Involving Elemental Sulfur. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000535] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Thanh Binh Nguyen
- Institut de Chimie des Substances NaturellesCNRS UPR 2301Université Paris-SudUniversité Paris-Saclay 1, avenue de la Terrasse Gif-sur-Yvette 91198 France
| |
Collapse
|
11
|
Huang MQ, Li TJ, Liu JQ, Shatskiy A, Kärkäs MD, Wang XS. Switchable Copper-Catalyzed Approach to Benzodithiole, Benzothiaselenole, and Dibenzodithiocine Skeletons. Org Lett 2020; 22:3454-3459. [PMID: 32286077 PMCID: PMC7343286 DOI: 10.1021/acs.orglett.0c00907] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Indexed: 12/19/2022]
Abstract
A copper-catalyzed reaction between 2-bromo-benzothioamides and S8 or Se involving sulfur rearrangement is reported, enabling access to benzodithioles 2 and benzothiaselenoles 6 in the presence of Cs2CO3. In the absence of S8 or Se, the reaction affords dibenzodithiocines 7 via two consecutive C(sp2)-S Ullmann couplings.
Collapse
Affiliation(s)
- Meng-Qiao Huang
- School
of Chemistry and Materials Science, Jiangsu Key Laboratory of Green
Synthesis for Functional Materials, Jiangsu
Normal University, Xuzhou, Jiangsu 221116, China
| | - Tuan-Jie Li
- School
of Chemistry and Materials Science, Jiangsu Key Laboratory of Green
Synthesis for Functional Materials, Jiangsu
Normal University, Xuzhou, Jiangsu 221116, China
| | - Jian-Quan Liu
- School
of Chemistry and Materials Science, Jiangsu Key Laboratory of Green
Synthesis for Functional Materials, Jiangsu
Normal University, Xuzhou, Jiangsu 221116, China
- Department
of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Andrey Shatskiy
- Department
of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Markus D. Kärkäs
- Department
of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Xiang-Shan Wang
- School
of Chemistry and Materials Science, Jiangsu Key Laboratory of Green
Synthesis for Functional Materials, Jiangsu
Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
12
|
Jafarpour F, Rajai-Daryasarei S, Gohari MH. Cascade cyclization versus chemoselective reduction: a solvent-controlled product divergence. Org Chem Front 2020. [DOI: 10.1039/d0qo00876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A convenient controllable cascade cyclization and partial reduction of enones for the divergent construction of two types of valuable compounds including polysubstituted thiophenes and saturated ketones are developed.
Collapse
Affiliation(s)
- Farnaz Jafarpour
- School of Chemistry
- College of Science
- University of Tehran
- 14155-6455 Tehran
- Iran
| | | | | |
Collapse
|
13
|
Sundaravelu N, Sekar G. Cu-Catalyzed one-pot synthesis of thiochromeno-quinolinone and thiochromeno-thioflavone via oxidative double hetero Michael addition using in situ generated nucleophiles. Chem Commun (Camb) 2020; 56:8826-8829. [DOI: 10.1039/d0cc03210g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper catalyzed three-component synthesis of π-conjugated tetracyclic thiochromeno-quinolinone and thiochromeno-thioflavone was established via oxidative double hetero Michael addition using in situ generated nucleophiles.
Collapse
Affiliation(s)
| | - Govindasamy Sekar
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600036
- India
| |
Collapse
|