1
|
Gu HY, Chen XY, Yang YF, Hong K. Diastereoselective Synthesis of Boryl-Substituted Vinylcyclopropanes via Deborylative Cyclization of Geminal Diboron Compounds. Org Lett 2025; 27:4208-4213. [PMID: 40226944 DOI: 10.1021/acs.orglett.5c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Herein we report a diastereoselective synthesis of boryl-substituted vinylcyclopropanes, a class of highly valuable synthetic building blocks, via deborylative cyclization of geminal diboron compounds. The method exhibits broad functional group tolerance and accommodates diverse alkyl and aryl α-substituents. The diastereoselectivity is primarily governed by the α-substituent (alkyl vs aryl), while olefin geometry in the side chain has a secondary influence. Mechanistic studies indicated distinct pathways: a concerted process for alkyl substrates and a carbanion intermediate for aryl derivatives. Synthetic utility of the products was also demonstrated.
Collapse
Affiliation(s)
- Heng-Yu Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai 200062, China
| | - Xin-Yi Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai 200062, China
| | - Yi-Fei Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai 200062, China
| | - Kai Hong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
2
|
Wang J, Bai S, Yang C, Qi X. Enantioselective Decarboxylative C(sp 3)-C(sp 3) Cross-Coupling of Aliphatic Redox-Active Esters with gem-Borazirconocene Alkanes. J Am Chem Soc 2024; 146:27070-27079. [PMID: 39288446 DOI: 10.1021/jacs.4c09245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Asymmetric decarboxylative cross-couplings of carboxylic acids are powerful methods for synthesizing chiral building blocks essential in medicinal chemistry and material science. Despite their potential, creating versatile chiral alkylboron derivatives through asymmetric decarboxylative C(sp3)-C(sp3) cross-coupling from readily available primary aliphatic acids and mild organometallic reagents remains challenging. In this study, we present a visible light-induced Ni-catalyzed enantioconvergent C(sp3)-C(sp3) cross-coupling of unactivated primary aliphatic acid NHPI esters with gem-borazirconocene alkanes, producing a diverse array of valuable chiral alkylboron building blocks. The method boasts a broad substrate scope, high functional group tolerance, and the ability for late-stage modification of complex drug molecules and natural products with high enantioselectivity, showcasing its synthetic potential. Mechanistic investigations suggest a nickel-catalyzed enantioconvergent radical cross-coupling pathway, wherein the primary radical from a redox-active ester is generated through single-electron reduction with ZrIII species. This represents an unprecedented example of enantioselective radical C(sp3)-C(sp3) cross-coupling in the absence of photocatalysts.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Songlin Bai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Chao Yang
- Celluranics New Materials Co., No. 18-28, Tongjiang Road, Taixing Economic and Technological Development Zone, Taizhou City, Jiangsu 225400, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Krokhmaliuk Y, Kleban I, Rassukana YV, Grygorenko OO. Organocatalytic Decarboxylative Borylation of Cyclopropane N-Hydroxyphthalimide Esters. J Org Chem 2024; 89:2771-2776. [PMID: 38320139 DOI: 10.1021/acs.joc.3c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A convenient protocol for the two-step organocatalytic decarboxylative borylation of 1,1-disubstituted, 1,2-disubstituted, and bicyclic cyclopropane carboxylic acids via the corresponding N-hydroxyphthalimide esters is described, using tert-butyl or ethyl isonicotinate as an inexpensive and readily available catalyst. The scope of the method was demonstrated, being limited mainly by electron-poor substrates. The reaction sequence showed good scalability (up to 51.5 g) and excellent trans diastereoselectivity (for the case of 1,2-disubstituted substrates). Therefore, the proposed approach is a very promising alternative to other existing (i.e., metal-catalyzed) methods for borodecarboxylation.
Collapse
Affiliation(s)
- Yevhen Krokhmaliuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyïv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Ihor Kleban
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyïv 02094, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyïv 02660, Ukraine
| | - Yuliya V Rassukana
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyïv 02660, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyïv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| |
Collapse
|
4
|
Jing R, Powell WC, Fisch KJ, Walczak MA. Desulfurative Borylation of Small Molecules, Peptides, and Proteins. J Am Chem Soc 2023; 145:22354-22360. [PMID: 37812507 PMCID: PMC10594600 DOI: 10.1021/jacs.3c09081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
We introduce a direct conversion of alkyl thiols into boronic acids, facilitated by a water-soluble phosphine, 1,3,5-triaza-7-phosphaadamantane (PTA), in conjunction with tetrahydroxydiboron (B2(OH)4), acting as both a radical initiator and a boron source. This desulfurative borylation reaction has been successfully applied to various substrates, including cysteine residues in oligopeptides and small proteins, primary alkyl thiols found in pharmaceutical compounds, disulfides, and selenocysteine. Optimization of reaction conditions was undertaken to reduce the formation of unwanted reactions, such as the reduction of alanyl or other primary radicals, and to prevent deleterious reactions between the phosphine and N-terminal amine that lead to methylene adducts by utilizing a buffer containing glycine-glycine (GG) dipeptide. The developed method is characterized by its operational simplicity and robustness. Moreover, its compatibility with various functional groups present in peptides and proteins makes it a promising tool for late-stage functionalization, extending its potential application across a broad spectrum of chemical and biological targets.
Collapse
Affiliation(s)
- Ruiheng Jing
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Wyatt C Powell
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Kyle J Fisch
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
5
|
He J, Cook SP. Metal-free, photoinduced remote C(sp 3)-H borylation. Chem Sci 2023; 14:9476-9481. [PMID: 37712044 PMCID: PMC10498503 DOI: 10.1039/d3sc03048b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Here, we describe a protocol for the metal-free, photo-induced borylation of unactivated C(sp3)-H bonds distal to an O-oxalate hydroxamic ester functionality. The methodology requires only substrate and bis(catecholato)diboron under light irradiation to effect the desired transformation. A range of linear and cyclic tertiary and secondary borylation products are obtained in good yields and high site-selectivity enabling the late-stage C(sp3)-H borylation of natural product derivatives and drug-like compounds.
Collapse
Affiliation(s)
- Jiachen He
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405-7102 USA
| | - Silas P Cook
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405-7102 USA
| |
Collapse
|
6
|
Yang X, Zhang G, Zhou J, Zhou C, Wang L, Li P. Microwave-promoted radical addition/cyclization of biaryl vinyl ketones with diacyl peroxides in water under metal-free conditions. Org Biomol Chem 2023; 21:4018-4021. [PMID: 37128770 DOI: 10.1039/d3ob00115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This communication reports an efficient microwave-promoted radical addition/cyclization reaction of biaryl vinyl ketones with diacyl peroxides in water under metal-free conditions. A series of 10-methyl-10-benzyl(alkyl)phenanthren-9(10H)-ones were obtained in high yields with good functional group tolerance.
Collapse
Affiliation(s)
- Xingyu Yang
- College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China.
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Gan Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Jingwen Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Pinhua Li
- College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China.
| |
Collapse
|
7
|
Wang B, Zhang X, Cao Y, Zou L, Qi X, Lu Q. Electrooxidative Activation of B-B Bond in B 2 cat 2 : Access to gem-Diborylalkanes via Paired Electrolysis. Angew Chem Int Ed Engl 2023; 62:e202218179. [PMID: 36722684 DOI: 10.1002/anie.202218179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
This report describes the unprecedented electrooxidation of a solvent (e.g., DMF)-ligated B2 cat2 complex, whereby a solvent-stabilized boryl radical is formed via quasi-homolytic cleavage of the B-B bond in a DMF-ligated B2 cat2 radical cation. Cyclic voltammetry and density functional theory provide evidence to support this novel B-B bond activation strategy. Furthermore, a strategy for the electrochemical gem-diborylation of gem-bromides via paired electrolysis is developed for the first time, affording a range of versatile gem-diborylalkanes, which are widely used in synthetic society. Notably, this reaction approach is scalable, transition-metal-free, and requires no external activator.
Collapse
Affiliation(s)
- Bingbing Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiangyu Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yangmin Cao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Long Zou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
8
|
Wei Q, Lee Y, Liang W, Chen X, Mu BS, Cui XY, Wu W, Bai S, Liu Z. Photocatalytic direct borylation of carboxylic acids. Nat Commun 2022; 13:7112. [PMID: 36402764 PMCID: PMC9675845 DOI: 10.1038/s41467-022-34833-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
The preparation of high value-added boronic acids from cheap and plentiful carboxylic acids is desirable. To date, the decarboxylative borylation of carboxylic acids is generally realized through the extra step synthesized redox-active ester intermediate or in situ generated carboxylic acid covalent derivatives above 150 °C reaction temperature. Here, we report a direct decarboxylative borylation method of carboxylic acids enabled by visible-light catalysis and that does not require any extra stoichiometric additives or synthesis steps. This operationally simple process produces CO2 and proceeds under mild reaction conditions, in terms of high step economy and good functional group compatibility. A guanidine-based biomimetic active decarboxylative mechanism is proposed and rationalized by mechanistic studies. The methodology reported herein should see broad application extending beyond borylation.
Collapse
Affiliation(s)
- Qiang Wei
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Yuhsuan Lee
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Weiqiu Liang
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Xiaolei Chen
- grid.32566.340000 0000 8571 0482Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000 China
| | - Bo-shuai Mu
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Xi-Yang Cui
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Wangsuo Wu
- grid.32566.340000 0000 8571 0482Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000 China
| | - Shuming Bai
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Zhibo Liu
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
9
|
Sarkar S, Wagulde S, Jia X, Gevorgyan V. General and Selective Metal-Free Radical α-C-H Borylation of Aliphatic Amines. Chem 2022; 8:3096-3108. [PMID: 36571075 PMCID: PMC9784107 DOI: 10.1016/j.chempr.2022.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite recent developments, selective C(sp3)-H borylation of feedstock amines remains a formidable challenge. Herein, we have developed a general, mild, and photoinduced transition metal- and strong base-free method for α-C(sp3)-H borylation of amines. This protocol features a regioselective 1,5-hydrogen atom transfer process to access key α-aminoalkyl radical intermediate using commercially available easy-to-install/remove iodobenzoyl radical translocating group. Remarkably, this general, efficient, and operationally simple method allows activation of primary and secondary α-C-H sites of a broad range of acyclic and cyclic amines toward highly regio- and diastereoselective synthesis of valuable α-aminoboronates. Utility of this protocol has been demonstrated by its employment in late-stage borylation of structurally complex amines and formal C-H arylation reaction of amines. Thus, it is expected that this operationally simple, general, and practical method will find broad application in organic synthesis and drug discovery.
Collapse
Affiliation(s)
- Sumon Sarkar
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, BSB 13, Richardson, Texas, 75080 (USA)
| | - Sidhant Wagulde
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, BSB 13, Richardson, Texas, 75080 (USA)
| | - Xiangqing Jia
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, BSB 13, Richardson, Texas, 75080 (USA)
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, BSB 13, Richardson, Texas, 75080 (USA)
- Lead contact
| |
Collapse
|
10
|
Electrochemically promoted decarboxylative borylation of alkyl N-hydroxyphthalimide esters. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Huang M, Hu J, Krummenacher I, Friedrich A, Braunschweig H, Westcott SA, Radius U, Marder TB. Base-Mediated Radical Borylation of Alkyl Sulfones. Chemistry 2022; 28:e202103866. [PMID: 34713940 PMCID: PMC9299846 DOI: 10.1002/chem.202103866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/06/2022]
Abstract
A practical and direct method was developed for the production of versatile alkyl boronate esters via transition metal-free borylation of primary and secondary alkyl sulfones. The key to the success of the strategy is the use of bis(neopentyl glycolato) diboron (B2 neop2 ), with a stoichiometric amount of base as a promoter. The practicality and industrial potential of this protocol are highlighted by its wide functional group tolerance, the late-stage modification of complex compounds, no need for further transesterification, and operational simplicity. Radical clock, radical trap experiments, and EPR studies were conducted which show that the borylation process involves radical intermediates.
Collapse
Affiliation(s)
- Mingming Huang
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jiefeng Hu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stephen A. Westcott
- Department of Chemistry & BiochemistryMount Allison UniversitySackvilleNB E4L 1G8Canada
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
12
|
Grygorenko OO, Moskvina VS, Kleban I, Hryshchyk OV. Synthesis of saturated and partially saturated heterocyclic boronic derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Volochnyuk DM, Gorlova AO, Grygorenko OO. Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry 2021; 27:15277-15326. [PMID: 34499378 DOI: 10.1002/chem.202102108] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/13/2022]
Abstract
This review discusses recent advances in the chemistry of saturated boronic acids, boronates, and trifluoroborates. Applications of the title compounds in the design of boron-containing drugs are surveyed, with special emphasis on α-amino boronic derivatives. A general overview of saturated boronic compounds as modern tools to construct C(sp3 )-C and C(sp3 )-heteroatom bonds is given, including recent developments in the Suzuki-Miyaura and Chan-Lam cross-couplings, single-electron-transfer processes including metallo- and organocatalytic photoredox reactions, and transformations of boron "ate" complexes. Finally, an attempt to summarize the current state of the art in the synthesis of saturated boronic acids, boronates, and trifluoroborates is made, with a brief mention of the "classical" methods (transmetallation of organolithium/magnesium reagents with boron species, anti-Markovnikov hydroboration of alkenes, and the modification of alkenyl boron compounds) and a special focus on recent methodologies (boronation of alkyl (pseudo)halides, derivatives of carboxylic acids, alcohols, and primary amines, boronative C-H activation, novel approaches to alkene hydroboration, and 1,2-metallate-type rearrangements).
Collapse
Affiliation(s)
- Dmitriy M Volochnyuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Alina O Gorlova
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
14
|
|
15
|
Liu H, Yu JT, Pan C. Diacyl peroxides: practical reagents as aryl and alkyl radical sources. Chem Commun (Camb) 2021; 57:6707-6724. [PMID: 34137395 DOI: 10.1039/d1cc02322e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diacyl peroxides, which can be easily synthesized from corresponding carboxylic acids, are commonly utilized as radical initiators and one electron oxidants. Under thermal, transition-metal catalysis or irradiation conditions the cleavage of relatively weak O-O bonds would occur followed by CO2 extrusion to generate the corresponding aryl or alkyl radicals. Thus, diacyl peroxides can be employed as ideal arylating and alkylating reagents in organic synthesis, including C-H/N-H arylation/alkylation, aryl/alkyl radical addition to unsaturated bonds, hetero arylation/alkylation, eliminative arylation/alkylation, perfluoroalkylation etc. Moreover, these arylation/alkylation protocols have been successfully utilized in the synthesis and late-stage functionalization of natural products as well as bioactive molecules. In this review, recent advances on arylation and alkylation using diacyl peroxides as aryl and alkyl radical sources are summarized and discussed.
Collapse
Affiliation(s)
- Han Liu
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China. and School of Chemistry & Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
16
|
Zeng Z, Feceu A, Sivendran N, Gooßen LJ. Decarboxylation‐Initiated Intermolecular Carbon‐Heteroatom Bond Formation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100211] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhongyi Zeng
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Abigail Feceu
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nardana Sivendran
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Lukas J. Gooßen
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
17
|
Tevyashova AN, Chudinov MV. Progress in the medicinal chemistry of organoboron compounds. RUSSIAN CHEMICAL REVIEWS 2021; 90:451-487. [DOI: 10.1070/rcr4977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The review aims to draw attention to the latest advances in the organoboron chemistry and therapeutic use of organoboron compounds. The synthetic strategies towards boron-containing compounds with proven in vitro and/or in vivo biological activities, including derivatives of boronic acids, benzoxaboroles, benzoxaborines and benzodiazaborines, are summarized. Approaches to the synthesis of hybrid structures containing an organoboron moiety as one of the pharmacophores are considered, and the effect of this modification on the pharmacological activity of the initial molecules is analyzed. On the basis of analysis of the published data, the most promising areas of research in the field of organoboron compounds are identified, including the latest methods of synthesis, modification and design of effective therapeutic agents.
The bibliography includes 246 references.
Collapse
|
18
|
Suzuki K, Nishimoto Y, Yasuda M. (o-Phenylenediamino)borylstannanes: Efficient Reagents for Borylation of Various Alkyl Radical Precursors. Chemistry 2021; 27:3968-3973. [PMID: 33205553 DOI: 10.1002/chem.202004692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
(o-Phenylenediamino)borylstannanes were newly synthesized to achieve radical boryl substitutions of a variety of alkyl radical precursors. Dehalogenative, deaminative, decharcogenative, and decarboxylative borylations proceeded in the presence of a radical initiator to give the corresponding organic boron compounds. Radical clock experiments and computational studies have provided insights into the mechanism of the homolytic substitution (SH 2) of the borylstannanes with alkyl radical intermediates. DFT calculation disclosed that the phenylenediamino structure lowered the LUMO level including the vacant p-orbital on the boron atom to enhance the reactivity to alkyl radicals in SH 2. Moreover, C(sp3 )-H borylation of THF was accomplished using the triplet state of xanthone.
Collapse
Affiliation(s)
- Kensuke Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Suita, Osaka, 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Suita, Osaka, 565-0871, Japan
| |
Collapse
|
19
|
Tang ZL, Ouyang XH, Song RJ, Li JH. Decarboxylative C(sp3)–N Cross-Coupling of Diacyl Peroxides with Nitrogen Nucleophiles. Org Lett 2021; 23:1000-1004. [DOI: 10.1021/acs.orglett.0c04203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zi-Liang Tang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Kawamura S, Mukherjee S, Sodeoka M. Recent advances in reactions using diacyl peroxides as sources of O- and C-functional groups. Org Biomol Chem 2021; 19:2096-2109. [DOI: 10.1039/d0ob02349c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review summarizes recent advances in reactions utilizing diacyl peroxides as O- and C-sources, with examples illustrating how the reactivity of diacyl peroxides in organic reactions can be controlled.
Collapse
Affiliation(s)
- Shintaro Kawamura
- Catalysis and Integrated Research Group
- RIKEN Center for Sustainable Resource Science
- Wako
- Japan
- Synthetic Organic Chemistry Laboratory
| | - Subrata Mukherjee
- Catalysis and Integrated Research Group
- RIKEN Center for Sustainable Resource Science
- Wako
- Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group
- RIKEN Center for Sustainable Resource Science
- Wako
- Japan
- Synthetic Organic Chemistry Laboratory
| |
Collapse
|
21
|
Lim Y, Kuang Y, Wu J, Yao SQ. Late‐Stage C(sp
2
)−H Functionalization: A Powerful Toolkit To Arm Natural Products for In Situ Proteome Profiling? Chemistry 2020; 27:3575-3580. [DOI: 10.1002/chem.202004373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/04/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ying‐Jie Lim
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Yulong Kuang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jie Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
22
|
Wang M, Shi Z. Methodologies and Strategies for Selective Borylation of C-Het and C-C Bonds. Chem Rev 2020; 120:7348-7398. [PMID: 32597639 DOI: 10.1021/acs.chemrev.9b00384] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organoborons have emerged as versatile building blocks in organic synthesis to achieve molecular diversity and as carboxylic acid bioisosteres with broad applicability in drug discovery. Traditionally, these compounds are prepared by the substitution of Grignard/lithium reagents with electrophilic boron species and Brown hydroboration. Recent developments have provided new routes for the efficient preparation of organoborons by applying reactions using chemical feedstocks with leaving groups. As compared to the previous methods that used organic halides (I, Br, and Cl), the direct borylation of less reactive C-Het and C-C bonds has become highly important to get efficiency and functional-group compatibility. This Review aims to provide a comprehensive overview of this topic, including (1) C-F bond borylation, (2) C-O bond borylation, (3) C-S bond borylation, (4) C-N bond borylation, and (5) C-C bond borylation. Considerable attention is given to the strategies and mechanisms involved. We expect that this Review will inspire chemists to discover more efficient transformations to expand this field.
Collapse
Affiliation(s)
- Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
23
|
Shu X, Xu R, Ma Q, Liao S. Accessing alkyl boronic esters via visible light-mediated decarboxylative addition reactions of redox-active esters. Org Chem Front 2020. [DOI: 10.1039/d0qo00440e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A visible light-mediated decarboxylative addition reaction for the synthesis of boronic esters based on abundant alkyl carboxylic acid feedstock has been developed.
Collapse
Affiliation(s)
- Xianli Shu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Ruting Xu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Qiang Ma
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| |
Collapse
|
24
|
Das KK, Paul S, Panda S. Transition metal-free synthesis of alkyl pinacol boronates. Org Biomol Chem 2020; 18:8939-8974. [DOI: 10.1039/d0ob01721c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review systematically outlined the research in the area of transition metal free synthesis of alkyl pinacol boronates, which are versatile and important scaffolds to construct diverse organic compounds.
Collapse
Affiliation(s)
- Kanak Kanti Das
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Swagata Paul
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Santanu Panda
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|