1
|
Zheng X, Wang M, Sun X, Gao Y, Chen H. Catalyst-free coupling of peroxypyrroloindolenines with amines to afford stable peroxyindolenines. Org Biomol Chem 2025; 23:1215-1218. [PMID: 39711314 DOI: 10.1039/d4ob01736f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Here we report a highly efficient method for coupling of peroxypyrroloindolenines with amines under catalyst-free conditions to obtain stable C2-N peroxyindolenines in high yields with remarkable functional group tolerance. Initial studies have shown that compound 13 exhibits potent inhibition of the B16/F10 cell line with an IC50 value of 2.18 μM.
Collapse
Affiliation(s)
- Xiaoshan Zheng
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Menghan Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Xianbin Sun
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
2
|
Biswas A, Hajra S. Regio‐ and Stereospecific Desulfinylative Chlorination of Spiroaziridine Oxindoles at Spiro‐Center for Formal [3+2]‐Cycloaddition with CS2: Sequential One‐Pot Synthesis of (‐)‐Spirobrassinin. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
3
|
Qi H, Zhao Y, Li W, Chen S. Synthesis of 1,4-benzoxazines via Y(OTf) 3-catalyzed ring opening/annulation cascade reaction of benzoxazoles with propargylic alcohols. Chem Commun (Camb) 2022; 58:9120-9123. [PMID: 35880715 DOI: 10.1039/d2cc03080b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient Y(OTf)3-catalyzed cascade formal [4 + 2] cyclization approach for the formation of 1,4-benzoxazine scaffolds from benzoxazoles and propargyl alcohols through a ring-opening and regioselective ring-closure process has been developed. By using this mild and practical protocol, a broad range of aldehyde-containing 1,4-benzoxazine compounds were prepared in moderate to excellent yields with good functional group tolerance. Mechanistic studies indicated that an SN1 nucleophilic substitution of benzoxazole with a propargyl cation was involved in this transformation.
Collapse
Affiliation(s)
- Hongbo Qi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Yupeng Zhao
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Wencong Li
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
4
|
Bera T, Singh B, Jana M, Saha J. Access to 3,3'-disubstituted peroxyoxindole derivatives and α-peroxyamides via azaoxyallyl cation-guided addition of hydroperoxides. Chem Commun (Camb) 2022; 58:7538-7541. [PMID: 35703384 DOI: 10.1039/d2cc02378d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a transition metal-free approach for access to 3,3'-disubstituted peroxyoxindole is disclosed, which harnesses a transient azaoxyallyl cation. This strategy is also applicable to the synthesis of structurally diverse α-peroxycarboxylic acid surrogates. The method exhibits good functional group tolerance and is suitable for generating a library of peroxy-containing compounds.
Collapse
Affiliation(s)
- Tishyasoumya Bera
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. .,Department of Chemistry, University of Kalyani, Kalyani-741235, India
| | - Bandana Singh
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Manoranjan Jana
- Department of Chemistry, University of Kalyani, Kalyani-741235, India
| | - Jaideep Saha
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
5
|
Saleh SKA, Hazra A, Hajra S. Regioselective Hydroperoxylation of Aziridines and Epoxides Only with Aqueous Hydrogen Peroxide. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202100858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- SK Abu Saleh
- Centre of Biomedical Research Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus Raebareli Road Lucknow 226014 India
| | - Atanu Hazra
- Centre of Biomedical Research Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus Raebareli Road Lucknow 226014 India
| | - Saumen Hajra
- Centre of Biomedical Research Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus Raebareli Road Lucknow 226014 India
| |
Collapse
|
6
|
Pan M, Tong Y, Qiu X, Zeng X, Xiong B. One-pot synthesis of 3-trifluoromethylbenzo[ b][1,4]oxazines from CF 3-imidoyl sulfoxonium ylides with 2-bromophenols. Chem Commun (Camb) 2022; 58:12443-12446. [DOI: 10.1039/d2cc04863a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot two-step fashion for the synthesis of 3-trifluoromethyl-1,4-benzoxazines from CF3-imidoyl sulfoxonium ylides and 2-bromophenols via lithium-bromide-promoted O–H insertion of sulfoxonium ylides and annulation has been demonstrated.
Collapse
Affiliation(s)
- Mingshi Pan
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yixin Tong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xiaodong Qiu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Biao Xiong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| |
Collapse
|
7
|
Sakla AP, Panda B, Laxmikeshav K, Soni JP, Bhandari S, Godugu C, Shankaraiah N. Dithiocarbamation of spiro-aziridine oxindoles: a facile access to C3-functionalised 3-thiooxindoles as apoptosis inducing agents. Org Biomol Chem 2021; 19:10622-10634. [PMID: 34870311 DOI: 10.1039/d1ob02102h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report the first dithiocarbamation of spiro-aziridine oxindoles involving regiospecific ring-opening by using in situ generated nucleophilic dithiocarbamates as an instant source of sulfur. This approach afforded C3-functionalised-3-thiooxindoles in good to excellent yields with a wide substrate scope under catalyst-free and mild reaction conditions. These compounds were screened for their anticancer activity against a panel of human cancer cell lines, wherein compound 3u exhibited significant cytotoxic activity against human lung cancer cells with an IC50 value of 4.31 ± 1.88 μM. Phase contrast microscopy as well as different staining assays such as acridine orange/ethidium bromide (AO/EB), DAPI and DCFDA demonstrated the induction of apoptosis in A549 lung cancer cells after treatment with compound 3u. In addition, the clonogenic assay and migration assay demonstrated the ability of compound 3u to inhibit colony formation and cell migration, respectively, in A549 cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500037, India.
| | - Biswajit Panda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500037, India
| | - Kritika Laxmikeshav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500037, India.
| | - Jay Prakash Soni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500037, India.
| | - Sonal Bhandari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500037, India.
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad - 500037, India.
| |
Collapse
|
8
|
Ubale AS, Shaikh MA, Gnanaprakasam B. Sequential Oxidative Fragmentation and Skeletal Rearrangement of Peroxides for the Synthesis of Quinazolinone Derivatives. J Org Chem 2021; 86:9621-9636. [PMID: 34232051 DOI: 10.1021/acs.joc.1c00889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For the first time, the sequential reaction of peroxyoxindole that involves base-promoted oxidative fragmentation to isocyanate formation and primary amine or amino alcohol accelerated skeletal rearrangement to synthesize exo-olefinic-substituted quinazolinone or oxazoloquinazolinone is reported. The advantages of this new reaction include a broad substrate scope and transition-metal-free and room-temperature conditions. The formation of the isocyanate as a key intermediate that accelerates oxidative skeletal rearrangement has been confirmed by trapping experiments and spectroscopic evidence.
Collapse
Affiliation(s)
- Akash S Ubale
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Moseen A Shaikh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
9
|
Biswas A, Saleh SKA, Hazra A, Debnath SC, Hajra S. Sequential one-pot synthesis of N-sulfonyl spiroaziridine oxindoles from spiroepoxy oxindoles. Org Biomol Chem 2021; 19:5624-5631. [PMID: 34100039 DOI: 10.1039/d1ob00541c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The N-sulfonyl spiroaziridine oxindole is a recently developed versatile precursor in the synthesis of a wide range of 3,3-disubstituted spirooxindoles. It is usually prepared in three steps from isatin and needs costly and hardly available sulfinimides and hazardous peracid. A sequential and one-pot direct strategy for the synthesis of terminal N-sulfonyl spiroaziridine oxindoles has been developed under ambient conditions with excellent yields (up to 95%) from easily accessible spiroepoxy oxindoles by regioselective amination with aqueous ammonia and a subsequent ring enclosure reaction of the resulting 1,2-amino alcohol using easily available sulfonyl chloride and a base. Other salient features of the protocol include inexpensive substrate requirement and the ease of isolation of the desired product by performing single column chromatographic purification after two consecutive steps.
Collapse
Affiliation(s)
- Anurag Biswas
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India. and University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - S K Abu Saleh
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India.
| | - Atanu Hazra
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India.
| | | | - Saumen Hajra
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India.
| |
Collapse
|
10
|
Ye F, Liu Q, Cui R, Xu D, Gao Y, Chen H. Diverse Functionalization of Tetrahydro-β-carbolines or Tetrahydro-γ-carbolines via Oxidative Coupling Rearrangement. J Org Chem 2020; 86:794-812. [PMID: 33232143 DOI: 10.1021/acs.joc.0c02351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report herein diverse functionalization of tetrahydro-β-carbolines (THβCs) or tetrahydro-γ-carbolines (THγCs) via oxidative coupling rearrangement. The treatment of THβCs or THγCs with t-BuOOH (TBHP) afforded 3-peroxyindolenines, followed by HCl catalyzed indolation to form unexpected 2-indolyl-3-peroxyindolenines. Further rearrangement of these peroxides allows for rapid access to a skeletally diverse chemical library in good to excellent yields.
Collapse
Affiliation(s)
- Fu Ye
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qing Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ranran Cui
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Dekang Xu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
11
|
Hajra S, Biswas A. Efficient chemical fixation and defixation cycle of carbon dioxide under ambient conditions. Sci Rep 2020; 10:15825. [PMID: 32978419 PMCID: PMC7519152 DOI: 10.1038/s41598-020-71761-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022] Open
Abstract
Chemical fixation of CO2 as a C1 feedstock for producing value-added products is an important post-combustion technology reducing the CO2 emission. As it is an irreversible process, not considered for the CO2 capture and release. Overall, these chemical transformations also do not help to mitigate global warming, as the energy consumed in different forms is much higher than the amount of CO2 fixed by chemical reactions. Here we describe the development of re-generable chemical fixation of CO2 by spiroaziridine oxindole, where CO2 is captured (chemical fixation) under catalyst-free condition at room temperature both in aqueous and non-aqueous medium even directly from the slow stream of flue gas producing regioselectively spirooxazolidinyl oxindoles, a potential drug. The CO2-adduct is reversed back to the spiroaziridine releasing CO2 under mild conditions. Further both the fixation-defixation of CO2 can be repeated under near ambient conditions for several cycles in a single loop using a recyclable reagent.
Collapse
Affiliation(s)
- Saumen Hajra
- Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, India.
| | - Anurag Biswas
- Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, India
| |
Collapse
|
12
|
Singh K, Kumar P, Jagadeesh C, Patel M, Das D, Saha J. An Approach to α‐ and β‐Amino Peroxides via Lewis Acid Catalyzed Ring Opening‐Peroxidation of Donor‐Acceptor Aziridines and
N
‐Activated Aziridines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kuldeep Singh
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus. Raebareli Road Lucknow 226014 Uttar Pradesh. India
| | - Pramod Kumar
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus. Raebareli Road Lucknow 226014 Uttar Pradesh. India
| | - Chenna Jagadeesh
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus. Raebareli Road Lucknow 226014 Uttar Pradesh. India
| | - Manveer Patel
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus. Raebareli Road Lucknow 226014 Uttar Pradesh. India
| | - Dinabandhu Das
- School of Physical Sciences Jawaharlal Nehru University New Delhi India
| | - Jaideep Saha
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus. Raebareli Road Lucknow 226014 Uttar Pradesh. India
| |
Collapse
|
13
|
Hajra S, Biswas A. Catalyst-Free Stereocontrolled Formal [3 + 2]-Cycloaddition of CO 2 for the Synthesis of Enantiopure Spiro[indoline-3,5'-oxazolidine]-2,2'-diones under Aqueous and Ambient Conditions. Org Lett 2020; 22:4990-4994. [PMID: 32543203 DOI: 10.1021/acs.orglett.0c01526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A highly efficient regio- and stereoselective spontaneous formal [3 + 2]-cycloaddition of CO2 in aqueous medium is developed for the one-pot synthesis of spiro[indoline-3,5'-oxazolidine]-2,2'-diones with excellent enantiopuirity (ee up to 99%) under catalyst-free and ambient conditions. The detailed study reveals NH-spiroaziridine- and 3-(aminomethyl)-3-chloro-oxindoles, two in situ generated reactive intermediate compounds for the spontaneous cycloaddition with CO2, and the latter is responsible for the stereoselectivity. An unprecedented mechanism of desulfinylation is also disclosed herewith.
Collapse
Affiliation(s)
- Saumen Hajra
- Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - Anurag Biswas
- Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
14
|
Hajra S, Roy S. Feedback Inhibition in Chemical Catalysis Leads the Dynamic Kinetic to Kinetic Resolution in C3-Indolylation of Spiro-epoxyoxindoles. Org Lett 2020; 22:1458-1463. [DOI: 10.1021/acs.orglett.0c00028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Saumen Hajra
- Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - Sayan Roy
- Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
15
|
Sakla AP, Kansal P, Shankaraiah N. Syntheses and reactivity of spiro-epoxy/aziridine oxindole cores: developments in the past decade. Org Biomol Chem 2020; 18:8572-8596. [DOI: 10.1039/d0ob01726d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review highlights various reactions to afford spiro-epoxy/aziridine oxindoles and their potential synthetic transformations.
Collapse
Affiliation(s)
- Akash P. Sakla
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad-500037
- India
| | - Pritish Kansal
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad-500037
- India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad-500037
- India
| |
Collapse
|