1
|
Nicchio L, Amin HIM, Genualdo S, Protti S, Fagnoni M. Water Effect on the Photochemistry of Arylazo Sulfonates. J Org Chem 2025; 90:6726-6736. [PMID: 40305221 PMCID: PMC12117561 DOI: 10.1021/acs.joc.5c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
The effect of water on visible-light-driven generation of aryl radicals or aryl cations from colored shelf-stable arylazo sulfonates has been investigated. Photoinduced ionic and radical decomposition of these salts compete, depending on the media used. In organic solvents, light-induced homolysis of the N-S bond occurs, and the resulting aryl radical may be used to some extent for arylation reactions. On the contrary, in neat water, radical chemistry is prevented by an efficient photoheterolysis, and a reactive aryl cation is otherwise generated.
Collapse
Affiliation(s)
- Luca Nicchio
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100Pavia, Italy
- Institut
de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de La Terrasse, 91198Gif-sur-Yvette Cedex, France
| | - Hawraz Ibrahim M. Amin
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100Pavia, Italy
- Department
of Chemistry, College of Science, Salahaddin
University-Erbil, 44001Erbil, Iraq
| | - Stefano Genualdo
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100Pavia, Italy
| | - Stefano Protti
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100Pavia, Italy
| |
Collapse
|
2
|
Li Q, Zhao CQ, Chen T, Han LB. Direct phosphorylation of benzylic C-H bonds under transition metal-free conditions forming sp 3C-P bonds. RSC Adv 2022; 12:18441-18444. [PMID: 35799919 PMCID: PMC9227801 DOI: 10.1039/d2ra02812c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 12/16/2022] Open
Abstract
Direct phosphorylation of benzylic C-H bonds was achieved in a biphasic system under transition metal-free conditions. A selective radical/radical sp3C-H/P(O)-H cross coupling was proposed, and various substituted toluenes were applicable. The transformation provided a promising method for constructing sp3C-P bonds.
Collapse
Affiliation(s)
- Qiang Li
- College of Chemistry and Chemical Engineering, Liaocheng University No. 1, Hunan Road Liaocheng Shandong 252059 China
| | - Chang-Qiu Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University No. 1, Hunan Road Liaocheng Shandong 252059 China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Li-Biao Han
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
- Zhejiang Yanfan New Materials Co., Ltd. Shangyu Zhejiang Province 312369 China
| |
Collapse
|
3
|
Zhu DL, Jiang S, Young DJ, Wu Q, Li HY, Li HX. Visible-light-driven C(sp 2)-H arylation of phenols with arylbromides enabled by electron donor-acceptor excitation. Chem Commun (Camb) 2022; 58:3637-3640. [PMID: 35212323 DOI: 10.1039/d1cc07127k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have developed a catalyst-free visible-light-driven C(sp2)-H arylation of unprotected phenols with arylbromides to give 2-arylated phenols. This reaction proceeds through the excitation of an electron donor-acceptor complex between a phenolate and an arylbromide, electron transfer, and debrominative C(sp2)-C(sp2) coupling.
Collapse
Affiliation(s)
- Da-Liang Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. .,School of Chemistry and Environmental Engineering, Analysis and Testing Centre, Yancheng Teachers University, Yancheng 224007, China
| | - Shan Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - David James Young
- College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia
| | - Qi Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Hai-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
4
|
Fischer O, Heinrich MR. 2-Fluoro-5-nitrophenyldiazonium: A Novel Sanger-Type Reagent for the Versatile Functionalization of Alcohols. Chemistry 2021; 27:5417-5421. [PMID: 33481282 PMCID: PMC8048593 DOI: 10.1002/chem.202100187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 12/15/2022]
Abstract
As a novel Sanger-type reagent, 2-fluoro-5-nitrophenyldiazonium tetrafluoroborate enabled the versatile functionalization of primary and secondary aliphatic alcohols. Based on a mild nucleophilic aromatic substitution of the fluorine atom under unprecedented, base-free conditions, the diazonium unit on the aromatic core of the resulting aryl-alkyl ether could be employed for such diverse transformations as radical C-H activation and cyclization, as well as palladium catalyzed cross-coupling reactions.
Collapse
Affiliation(s)
- Oliver Fischer
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Markus R. Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|
5
|
Altmann L, Zantop V, Wenisch P, Diesendorf N, Heinrich MR. Visible Light Promoted, Catalyst-Free Radical Carbohydroxylation and Carboetherification under Mild Biomimetic Conditions. Chemistry 2021; 27:2452-2462. [PMID: 33006177 PMCID: PMC7898656 DOI: 10.1002/chem.202004234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Indexed: 11/25/2022]
Abstract
Metal and catalyst-free carbohydroxylations and carboetherifications at room temperature have been achieved by a combination of beneficial factors including high aryl diazonium concentration and visible light irradiation. The acceleration of the reaction by visible light irradiation is particularly remarkable against the background that neither the aryldiazonium salt nor the alkene show absorptions in the respective range of wavelength. These observations point to weak charge transfer interactions between diazonium salt and alkene, which are nevertheless able to considerably influence the reaction course. As highly promising perspective, many more aryldiazonium-based radical arylations might benefit from simple light irradiation without requiring a photocatalyst or particular additive.
Collapse
Affiliation(s)
- Lisa‐Marie Altmann
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Viviane Zantop
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Pia Wenisch
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Nina Diesendorf
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Markus R. Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|
6
|
Bugaenko DI, Volkov AA, Karchava AV, Yurovskaya MA. Generation of aryl radicals by redox processes. Recent progress in the arylation methodology. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arylation methods based on the generation and use of aryl radicals have been a rapidly growing field of research in recent years and currently represent a powerful strategy for carbon – carbon and carbon – heteroatom bond formation. The progress in this field is related to advances in the methods for generation of aryl radicals. The currently used aryl radical precursors include aryl halides, aryldiazonium and diaryliodonium salts, arylcarboxylic acids and their derivatives, arylboronic acids, arylhydrazines, organosulfur(II, VI) compounds and some other compounds. Aryl radicals are generated under mild conditions by single electron reduction or oxidation of precursors induced by conventional reagents, visible light or electric current. A crucial role in the development of the radical arylation methodology belongs to photoredox processes either catalyzed by transition metal complexes or organic dyes or proceeding without catalysts. Unlike the conventional transition metal-catalyzed arylation methods, radical arylation reactions proceed very often at room temperature and have high functional group tolerance. Without claiming to be exhaustive, this review covers the most important advances of the current decade in the generation and synthetic applications of (het)aryl radicals. Examples of reactions are given and mechanistic insights are highlighted.
The bibliography includes 341 references.
Collapse
|
7
|
Antenucci A, Barbero M, Dughera S, Ghigo G. Copper catalysed Gomberg-Bachmann-Hey reactions of arenediazonium tetrafluoroborates and heteroarenediazonium o-benzenedisulfonimides. Synthetic and mechanistic aspects. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Murugesh N, Karvembu R, Vedachalam S. The base-induced regioselective radical arylation of 3-aminochromone with aryl hydrazine. Org Biomol Chem 2020; 18:7884-7891. [DOI: 10.1039/d0ob01689f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A simple and efficient direct radical C-2 arylation of 3-aminochromone derivatives with aryl hydrazine under basic conditions is described.
Collapse
Affiliation(s)
- Nithya Murugesh
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli-620015
- India
| | - Ramasamy Karvembu
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli-620015
- India
| | | |
Collapse
|