1
|
de Oliveira JC, Abreu BU, Paz ERS, Almeida RG, Honorato J, Souza CP, Fantuzzi F, Ramos VFS, Menna-Barreto RFS, Araujo MH, Jardim GAM, da Silva Júnior EN. SuFEx-Functionalized Quinones via Ruthenium-Catalyzed C-H Alkenylation: A Potential Building Block for Bioactivity Valorization. Chem Asian J 2024:e202400757. [PMID: 39136413 DOI: 10.1002/asia.202400757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Indexed: 10/22/2024]
Abstract
Herein, we describe the Ru-catalyzed C-H alkenylation of 1,4-naphthoquinones (1,4-NQs), resulting in 1,4-naphthoquinoidal/SuFEx hybrids with moderate to good yields. This method provides a novel route for direct access to ethenesulfonyl-fluorinated quinone structures. We conducted mechanistic studies to gain an in-depth understanding of the elementary steps of the reaction. Additionally, we evaluated the prototypes against trypomastigote forms of T. cruzi, leading to the identification of compounds with potent trypanocidal activity.
Collapse
Affiliation(s)
- Joyce C de Oliveira
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Breno U Abreu
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Esther R S Paz
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Renata G Almeida
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - João Honorato
- São Carlos Institute of Physics, Physics and Interdisciplinary Sciences Department, Universidade de São Paulo, USP, São Carlos, 13560-970, Brazil
| | - Cauê P Souza
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury, CT2 7NH, United Kingdom
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury, CT2 7NH, United Kingdom
| | - Victor F S Ramos
- Laboratory of Cellular Biology, IOC, FIOCRUZ, Rio de Janeiro, RJ, 21045-900, Brazil
| | | | - Maria H Araujo
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Guilherme A M Jardim
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Eufrânio N da Silva Júnior
- Instituto de Ciências Exatas, Departamento de Química, Universidade deral de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
2
|
de Carvalho RL, Wood JM, Almeida RG, Berry NG, da Silva Júnior EN, Bower JF. The Synthesis and Reactivity of Naphthoquinonynes. Angew Chem Int Ed Engl 2024; 63:e202400188. [PMID: 38445547 DOI: 10.1002/anie.202400188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
The first systematic exploration of the synthesis and reactivity of naphthoquinonynes is described. Routes to two regioisomeric Kobayashi-type naphthoquinonyne precursors have been developed, and the reactivity of the ensuing 6,7- and 5,6-aryne intermediates has been investigated. Remarkably, these studies have revealed that a broad range of cycloadditions, nucleophile additions and difunctionalizations can be achieved while maintaining the integrity of the highly sensitive quinone unit. The methodologies offer a powerful diversity oriented approach to C6 and C7 functionalized naphthoquinones, which are typically challenging to access. From a reactivity viewpoint, the study is significant because it demonstrates that aryne-based functionalizations can be utilized strategically in the presence of highly reactive and directly competing functionality.
Collapse
Affiliation(s)
- Renato L de Carvalho
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais - UFMG, 31270-901, Belo, Horizonte - MG, Brazil
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - James M Wood
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Renata G Almeida
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais - UFMG, 31270-901, Belo, Horizonte - MG, Brazil
| | - Neil G Berry
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Eufrânio N da Silva Júnior
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais - UFMG, 31270-901, Belo, Horizonte - MG, Brazil
| | - John F Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
3
|
Wang H, Jie X, Chong Q, Meng F. Pathway-divergent coupling of 1,3-enynes with acrylates through cascade cobalt catalysis. Nat Commun 2024; 15:3427. [PMID: 38654019 DOI: 10.1038/s41467-024-47719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Catalytic cascade transformations of simple starting materials into highly functionalized molecules bearing a stereochemically defined multisubstituted alkene, which are important in medicinal chemistry, natural product synthesis, and material science, are in high demand for organic synthesis. The development of multiple reaction pathways accurately controlled by catalysts derived from different ligands is a critical goal in the field of catalysis. Here we report a cobalt-catalyzed strategy for the direct coupling of inexpensive 1,3-enynes with two molecules of acrylates to construct a high diversity of functionalized 1,3-dienes containing a trisubstituted or tetrasubstituted olefin. Such cascade reactions can proceed through three different pathways initiated by oxidative cyclization to achieve multiple bond formation in high chemo-, regio- and stereoselectivity precisely controlled by ligands, providing a platform for the development of tandem carbon-carbon bond-forming reactions.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiaofeng Jie
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300074, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100086, China.
| |
Collapse
|
4
|
Tikhomirov AS, Sinkevich YB, Dezhenkova LG, Kaluzhny DN, Ilyinsky NS, Borshchevskiy VI, Schols D, Shchekotikhin AE. Synthesis and antitumor activity of cyclopentane-fused anthraquinone derivatives. Eur J Med Chem 2024; 265:116103. [PMID: 38176358 DOI: 10.1016/j.ejmech.2023.116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
In our pursuit of developing novel analogs of anthracyclines with enhanced antitumor efficacy and safety, we have designed a synthesis scheme for 4,11-dihydroxy-5,10-dioxocyclopenta[b]anthracene-2-carboxamides. These newly synthesized compounds exhibit remarkable antiproliferative potency against various mammalian tumor cell lines, including those expressing activated mechanisms of multidrug resistance. The structure of the diamine moiety in the carboxamide side chain emerges as a critical determinant for anticancer activity and interaction with key targets such as DNA, topoisomerase 1, and ROS induction. Notably, the introduced modification to the doxorubicin structure results in significantly increased lipophilicity, cellular uptake, and preferential distribution in lysosomes. Consequently, while maintaining an impact on anthracyclines targets, these novel derivatives also demonstrate the potential to induce cytotoxicity through pathways associated with lysosomes. In summary, derivatives of cyclic diamines, particularly 3-aminopyrrolidine, can be considered a superior choice compared to aminosugars for incorporation into natural and semi-synthetic anthracyclines or new anthraquinone derivatives, aiming to circumvent efflux-mediated drug resistance.
Collapse
Affiliation(s)
- Alexander S Tikhomirov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation
| | - Yuri B Sinkevich
- Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow, 125047, Russian Federation
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991, Moscow, Russian Federation
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russian Federation
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russian Federation
| | - Dominique Schols
- Rega Institute for Medical Research, K.U. Leuven, 3000, Leuven, Belgium
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation.
| |
Collapse
|
5
|
Munawar S, Zahoor AF, Hussain SM, Ahmad S, Mansha A, Parveen B, Ali KG, Irfan A. Steglich esterification: A versatile synthetic approach toward the synthesis of natural products, their analogues/derivatives. Heliyon 2024; 10:e23416. [PMID: 38170008 PMCID: PMC10758822 DOI: 10.1016/j.heliyon.2023.e23416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The exploitation of natural products and their analogues in the field of pharmacology has been regarded as of great importance. It can be attributed to the fact that these scaffolds exhibit diverse chemical properties, distinct biological activities and zenith specificity in their biochemical processes, enabling them to act as favorable structures for lead compounds. The synthesis of natural products has been a crafty and hard-to-achieve task. Steglich esterification reaction has played a significant role in that area. It is a mild and efficient technique for constructing ester linkages. This technique involves the establishment of ester moiety via a carbodiimide-based condensation of a carboxylic acid with an alcohol, thiol or an amine catalyzed by dimethyl aminopyridine (DMAP). Specifically, labile reagents with multiple reactive sites are esterified efficiently with the classical and modified Steglich esterification conditions, which accounts for their synthetic utility. This review encloses the performance of the Steglich esterification reaction in forging the ester linkage for executing the total synthesis of natural products and their derivatives since 2018.
Collapse
Affiliation(s)
- Saba Munawar
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Syed Makhdoom Hussain
- Department of Zoology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, 38000, Faisalabad, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia
| |
Collapse
|
6
|
Santos LH, Kronenberger T, Almeida RG, Silva EB, Rocha REO, Oliveira JC, Barreto LV, Skinner D, Fajtová P, Giardini MA, Woodworth B, Bardine C, Lourenço AL, Craik CS, Poso A, Podust LM, McKerrow JH, Siqueira-Neto JL, O'Donoghue AJ, da Silva Júnior EN, Ferreira RS. Structure-Based Identification of Naphthoquinones and Derivatives as Novel Inhibitors of Main Protease M pro and Papain-like Protease PL pro of SARS-CoV-2. J Chem Inf Model 2022; 62:6553-6573. [PMID: 35960688 PMCID: PMC9397563 DOI: 10.1021/acs.jcim.2c00693] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 01/07/2023]
Abstract
The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In this study, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC50) values between 0.41 μM and 9.0 μM. In addition, three compounds inhibited PLpro with IC50 ranging from 1.9 μM to 3.3 μM. To verify the specificity of Mpro and PLpro inhibitors, our experiments included an assessment of common causes of false positives such as aggregation, high compound fluorescence, and inhibition by enzyme oxidation. Altogether, we confirmed novel classes of specific Mpro and PLpro inhibitors. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.
Collapse
Affiliation(s)
- Lucianna H Santos
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Thales Kronenberger
- Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Renata G Almeida
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Elany B Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States
| | - Rafael E O Rocha
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Joyce C Oliveira
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luiza V Barreto
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Danielle Skinner
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Miriam A Giardini
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States
| | - Brendon Woodworth
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California 92093, United States
| | - Conner Bardine
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
| | - André L Lourenço
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
| | - Antti Poso
- Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Larissa M Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States
| | - James H McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Rafaela S Ferreira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
7
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
8
|
Hore S, Singh A, De S, Singh N, Gandon V, Singh RP. Polyarylquinone Synthesis by Relayed Dehydrogenative [2 + 2 + 2] Cycloaddition. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Soumyadip Hore
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Abhijeet Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shreemoyee De
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS UMR 8182, Université Paris Saclay, Orsay Cedex 91405, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau Cedex 91128, France
| | - Ravi P. Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
9
|
Llobat A, Escorihuela J, Ramírez de Arellano C, Fustero S, Medio-Simón M. Intramolecular rhodium-catalysed [2 + 2 + 2] cycloaddition of linear chiral N-bridged triynes: straightforward access to fused tetrahydroisoquinoline core. Org Biomol Chem 2022; 20:2433-2445. [PMID: 35274117 DOI: 10.1039/d2ob00340f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A route for the preparation of merged symmetrical tetrahydroisoquinolines with central chirality through a rhodium-catalyzed intramolecular [2 + 2 + 2] cycloaddition involving enantiopure triynes as substrates is described. The results show that linear triynes lacking a 3-atom tether can undergo efficient cyclisation. The N-tethered 1,7,13-triynes used in our approach were easily prepared from readily accessible chiral homopropargyl amides, the basic building blocks in our approach, which were efficiently obtained by diastereoselective addition of propargyl magnesium bromide to Ellman imines. Additional substitution at the benzene rings could be attained when substituted triynes at the terminal triple bonds were employed, giving access to more complex tetrahydroisoquinolines after the rhodium-catalyzed intramolecular [2 + 2 + 2] cycloaddition. Among the different transition-metal catalysts, the Wilkinson complex (RhCl(PPh3)3) afforded higher yields in the cyclisation of linear triynes; however, triynes bearing a Br substituent at the terminal positions underwent the cyclisation more efficiently in the presence of [RhCl(CO)2]2.
Collapse
Affiliation(s)
- Alberto Llobat
- Departamento de Química Orgánica, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Carmen Ramírez de Arellano
- Departamento de Química Orgánica, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Santos Fustero
- Departamento de Química Orgánica, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Mercedes Medio-Simón
- Departamento de Química Orgánica, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
10
|
Hou C, Ma Y, Zhang Y, Xu H, Wu Y, Zhao J, Wang Y, Liu Y. Ni‐Catalyzed Regioselective Cyclotrimerization of Internal Esteryl Alkynes towards Polysubstituted Benzene Rings. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chao Hou
- Changchun University of Technology College of Chemistry and Life Science CHINA
| | - Yan Ma
- Jilin Baojinng Carbon Materials Co. Production Department CHINA
| | - Yongqi Zhang
- Changchun University of Technology College of Chemistry and Life Science CHINA
| | - Huiling Xu
- Jilin Baojing Carbon Materials Co. Production Department CHINA
| | - Yuanqi Wu
- Changchun University of Technology College of Chemistry and Life Science CHINA
| | - Jinbo Zhao
- Changchun University of Technology College of Chemistry and Life Science CHINA
| | - Yuchao Wang
- Changchun University of Technology College of Chemistry and Life Science CHINA
| | - Yu Liu
- Changchun University of Technology College of Chemistry and Life Science Yan'an Road 2005 130012 Changchun CHINA
| |
Collapse
|
11
|
Wang L, Liu C, Li L, Wang X, Sun R, Zhou M, Wang H. Visible‐Light‐Promoted
[3 + 2] Cycloaddition of
2
H
‐Azirines
with Quinones: Access to Substituted Benzo[
f
]isoindole‐4,9‐diones. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lijia Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Chuang Liu
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Lei Li
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Xin Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Ran Sun
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Ming‐Dong Zhou
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - He Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| |
Collapse
|
12
|
Santos LH, Kronenberger T, Almeida RG, Silva EB, Rocha REO, Oliveira JC, Barreto LV, Skinner D, Fajtová P, Giardini MA, Woodworth B, Bardine C, Lourenço AL, Craik CS, Poso A, Podust LM, McKerrow JH, Siqueira-Neto JL, O'Donoghue AJ, da Silva Júnior EN, Ferreira RS. Structure-based identification of naphthoquinones and derivatives as novel inhibitors of main protease Mpro and papain-like protease PLpro of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.05.475095. [PMID: 35018373 PMCID: PMC8750648 DOI: 10.1101/2022.01.05.475095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In the present work, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC 50 ) values between 0.41 µM and 66 µM. In addition, eight compounds inhibited PLpro with IC 50 ranging from 1.7 µM to 46 µM. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.
Collapse
|
13
|
Yun X, Yu Z, Liu T. Mechanistic insight into the [2 + 2 + 2] cycloadditions between 1,6-diyne and benzoquinone catalyzed by rhodium complex: A theoretical study. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Lima DJB, Almeida RG, Jardim GAM, Barbosa BPA, Santos ACC, Valença WO, Scheide MR, Gatto CC, de Carvalho GGC, Costa PMS, Pessoa C, Pereira CLM, Jacob C, Braga AL, da Silva Júnior EN. It takes two to tango: synthesis of cytotoxic quinones containing two redox active centers with potential antitumor activity. RSC Med Chem 2021; 12:1709-1721. [PMID: 34778772 DOI: 10.1039/d1md00168j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
We report the synthesis of 47 new quinone-based derivatives via click chemistry and their subsequent evaluation against cancer cell lines and the control L929 murine fibroblast cell line. These compounds combine two redox centers, such as an ortho-quinone/para-quinone or quinones/selenium with the 1,2,3-triazole nucleus. Several of these compounds present IC50 values below 0.5 μM in cancer cell lines with significantly lower cytotoxicity in the control cell line L929 and good selectivity index. Hence, our study confirms the use of a complete and very diverse range of quinone compounds with potential application against certain cancer cell lines.
Collapse
Affiliation(s)
- Daisy J B Lima
- Department of Physiology and Pharmacology, Federal University of Ceará Fortaleza 60430-270 Ceará Brazil.,Division of Bioorganic Chemistry, School of Pharmacy, University of Saarland 66123 Saarbruecken Germany
| | - Renata G Almeida
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais Belo Horizonte 31270-901 Minas Gerais Brazil
| | - Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais Belo Horizonte 31270-901 Minas Gerais Brazil .,Department of Chemistry, Federal University of Santa Catarina Florianópolis Santa Catarina 88040-900 Brazil
| | - Breno P A Barbosa
- Division of Bioorganic Chemistry, School of Pharmacy, University of Saarland 66123 Saarbruecken Germany.,Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais Belo Horizonte 31270-901 Minas Gerais Brazil
| | - Augusto C C Santos
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais Belo Horizonte 31270-901 Minas Gerais Brazil
| | - Wagner O Valença
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais Belo Horizonte 31270-901 Minas Gerais Brazil
| | - Marcos R Scheide
- Department of Chemistry, Federal University of Santa Catarina Florianópolis Santa Catarina 88040-900 Brazil
| | - Claudia C Gatto
- Institute of Chemistry, University of Brasilia Brasilia 70904-970 DF Brazil
| | - Guilherme G C de Carvalho
- Department of Physiology and Pharmacology, Federal University of Ceará Fortaleza 60430-270 Ceará Brazil
| | - Pedro M S Costa
- Department of Physiology and Pharmacology, Federal University of Ceará Fortaleza 60430-270 Ceará Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Federal University of Ceará Fortaleza 60430-270 Ceará Brazil
| | - Cynthia L M Pereira
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais Belo Horizonte 31270-901 Minas Gerais Brazil
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, University of Saarland 66123 Saarbruecken Germany
| | - Antonio L Braga
- Department of Chemistry, Federal University of Santa Catarina Florianópolis Santa Catarina 88040-900 Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais Belo Horizonte 31270-901 Minas Gerais Brazil
| |
Collapse
|
15
|
Ratovelomanana-Vidal V, Matton P, Huvelle S, Haddad M, Phansavath P. Recent Progress in Metal-Catalyzed [2+2+2] Cycloaddition Reactions. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1719831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractMetal-catalyzed [2+2+2] cycloaddition is a powerful tool that allows rapid construction of functionalized 6-membered carbo- and heterocycles in a single step through an atom-economical process with high functional group tolerance. The reaction is usually regio- and chemoselective although selectivity issues can still be challenging for intermolecular reactions involving the cross-[2+2+2] cycloaddition of two or three different alkynes and various strategies have been developed to attain high selectivities. Furthermore, enantioselective [2+2+2] cycloaddition is an efficient means to create central, axial, and planar chirality and a variety of chiral organometallic complexes can be used for asymmetric transition-metal-catalyzed inter- and intramolecular reactions. This review summarizes the recent advances in the field of [2+2+2] cycloaddition.1 Introduction2 Formation of Carbocycles2.1 Intermolecular Reactions2.1.1 Cyclotrimerization of Alkynes2.1.2 [2+2+2] Cycloaddition of Two Different Alkynes2.1.3 [2+2+2] Cycloaddition of Alkynes/Alkenes with Alkenes/Enamides2.2 Partially Intramolecular [2+2+2] Cycloaddition Reactions2.2.1 Rhodium-Catalyzed [2+2+2] Cycloaddition2.2.2 Molybdenum-Catalyzed [2+2+2] Cycloaddition2.2.3 Cobalt-Catalyzed [2+2+2] Cycloaddition2.2.4 Ruthenium-Catalyzed [2+2+2] Cycloaddition2.2.5 Other Metal-Catalyzed [2+2+2] Cycloaddition2.3 Totally Intramolecular [2+2+2] Cycloaddition Reactions3 Formation of Heterocycles3.1 Cycloaddition of Alkynes with Nitriles3.2 Cycloaddition of 1,6-Diynes with Cyanamides3.3 Cycloaddition of 1,6-Diynes with Selenocyanates3.4 Cycloaddition of Imines with Allenes or Alkenes3.5 Cycloaddition of (Thio)Cyanates and Isocyanates3.6 Cycloaddition of 1,3,5-Triazines with Allenes3.7 Cycloaddition of Aldehydes with Enynes or Allenes/Alkenes3.8 Totally Intramolecular [2+2+2] Cycloaddition Reactions4 Conclusion
Collapse
|
16
|
Nale SD, Maiti D, Lee YR. Construction of Highly Functionalized Xanthones via Rh-Catalyzed Cascade C-H Activation/ O-Annulation. Org Lett 2021; 23:2465-2470. [PMID: 33719464 DOI: 10.1021/acs.orglett.1c00391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A facile and efficient strategy for obtaining functionalized and multihydroxylated xanthones via Rh catalysis under redox-neutral conditions is developed. Diverse salicylaldehydes bearing heterocycles, aromatics, and fused aromatics can be rapidly coupled with 1,4-benzoquinones or 1,4-hydroquinones to afford valuable xanthones via cascade C-H/O-H functionalization and annulation. This protocol provides a rapid synthetic approach to obtain biologically active materials through late-stage functionalization and prepares natural products such as subelliptenone, pruniflorone N, and ravenelin.
Collapse
Affiliation(s)
- Sagar D Nale
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
17
|
Synergistic Dinuclear Rhodium Induced Rhodium-Walking Enabling Alkene Terminal Arylation: A Theoretical Study. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Wood JM, de Carvalho RL, da Silva Júnior EN. The Different Facets of Metal-Catalyzed C-H Functionalization Involving Quinone Compounds. CHEM REC 2021; 21:2604-2637. [PMID: 33415843 DOI: 10.1002/tcr.202000163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Metal-catalysed C-H functionalization has emerged as a powerful platform for the derivatization of quinones, a class of compounds with wide-ranging applications. This review organises and discusses the evolution of this chemistry from early Fujiwara-Moritani reactions, through to modern directing-group assisted C-H functionalization processes, including C-H functionalization reactions directed by the quinone ring itself. Mechanistic details of these reactions are provided to afford insight into how the unique reactivity of quinoidal compounds has been leveraged in each example.
Collapse
Affiliation(s)
- James M Wood
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
19
|
Wang B, Xu H, Zhang H, Zhang GM, Li FY, He S, Shi ZC, Wang JY. B(C6F5)3-catalyzed three-component tandem reaction to construct novel polycyclic quinone derivatives: synthesis of a carbonate salt chromogenic chemosensor. Org Chem Front 2021. [DOI: 10.1039/d1qo01199e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series novel polycyclic quinone derivatives were constructed providing a carbonate salt chromogenic chemosensor.
Collapse
Affiliation(s)
- Bei Wang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hong Xu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hua Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guo-Ming Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fu-Yu Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuai He
- Southwest Minzu University, Chengdu 610041, PR China
| | - Zhi-Chuan Shi
- Southwest Minzu University, Chengdu 610041, PR China
| | - Ji-Yu Wang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
| |
Collapse
|
20
|
da Silva Júnior EN, de Carvalho RL, Almeida RG, Rosa LG, Fantuzzi F, Rogge T, Costa PMS, Pessoa C, Jacob C, Ackermann L. Ruthenium(II)-Catalyzed Double Annulation of Quinones: Step-Economical Access to Valuable Bioactive Compounds. Chemistry 2020; 26:10981-10986. [PMID: 32212283 DOI: 10.1002/chem.202001434] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Double ruthenium(II)-catalyzed alkyne annulations of quinones were accomplished. Thus, a strategy is reported that provides step-economical access to valuable quinones with a wide range of applications. C-H/N-H activations for alkyne annulations of naphthoquinones provided challenging polycyclic quinoidal compounds by forming four new bonds in one step. The singular power of the thus-obtained compounds was reflected by their antileukemic activity.
Collapse
Affiliation(s)
- Eufrânio N da Silva Júnior
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Renato L de Carvalho
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Renata G Almeida
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Luisa G Rosa
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Felipe Fantuzzi
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Torben Rogge
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Pedro M S Costa
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-270, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-270, Brazil
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, University of Saarland, 66123, Saarbrücken, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Potsdamer Strasse 58, 10785, Berlin, Germany
| |
Collapse
|
21
|
Mies T, Ma TK, Barrett AGM. Syntheses of polyfunctional aromatic compounds from non-aromatic precursors. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Wood JM, Satam NS, Almeida RG, Cristani VS, de Lima DP, Dantas-Pereira L, Salomão K, Menna-Barreto RF, Namboothiri IN, Bower JF, da Silva Júnior EN. Strategies towards potent trypanocidal drugs: Application of Rh-catalyzed [2 + 2 + 2] cycloadditions, sulfonyl phthalide annulation and nitroalkene reactions for the synthesis of substituted quinones and their evaluation against Trypanosoma cruzi. Bioorg Med Chem 2020; 28:115565. [DOI: 10.1016/j.bmc.2020.115565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
|