1
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
2
|
Pan C, Wang L, Han J. Diaryliodonium Salts Enabled Arylation, Arylocyclization, and Aryl-Migration. CHEM REC 2023; 23:e202300138. [PMID: 37249418 DOI: 10.1002/tcr.202300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Our research interest focusing on synthetic methodology with diaryliodonium salts, is summarized in this account. Besides employing a dual activation strategy of C-I and ortho C-H bonds, we have introduced vicinal functional groups at ortho-positions of diaryliodonium salts, in which their unique reactivities have been explored in various processes, including arylation, diarylation, cascade annulation, benzocyclization, arylocyclization, and intramolecular aryl migration. The variety of mechanisms of these reactions that involves either transition metals, especially palladium in organometallic catalysis, or transition-metal free conditions, were discussed in the context.
Collapse
Affiliation(s)
- Cheng Pan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Department of Fine Chemistry and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Department of Fine Chemistry and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Department of Fine Chemistry and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
3
|
Nishimura Y, Harimoto T, Suzuki T, Ishigaki Y. One-Pot Synthesis of Helical Azaheptalene and Chiroptical Switching of an Isolable Radical Cation. Chemistry 2023; 29:e202301759. [PMID: 37280181 DOI: 10.1002/chem.202301759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
A nitrogen-centered heptalene, azaheptalene, was designed as a representative of a new class of redox-responsive molecules with a large steric strain that originates from the adjacent seven-membered rings. The pentabenzo derivative of azaheptalene was efficiently synthesized by a palladium-catalyzed one-pot reaction of commercially available reagents. Bromination led to mono- and dibrominated derivatives, the latter of which is interconvertible with isolable radical cation species exhibiting near-infrared absorption. Since the azaheptalene skeleton shows configurationally stable helicity with a large torsion angle, enantiomers could be successfully separated. Thus, optically pure azaheptalenes with P- or M-helicity showed strong chiroptical properties (|gabs |≥0.01), which could be changed by an electric potential.
Collapse
Affiliation(s)
- Yuta Nishimura
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, 060-0810, Sapporo, Japan
| | - Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, 060-0810, Sapporo, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, 060-0810, Sapporo, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, 060-0810, Sapporo, Japan
| |
Collapse
|
4
|
Singhal R, Choudhary SP, Malik B, Pilania M. Cyclic diaryliodonium salts: applications and overview. Org Biomol Chem 2023; 21:4358-4378. [PMID: 37161758 DOI: 10.1039/d3ob00134b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibility, wide substrate scope, and functionalization tolerance, have made them appropriate starting materials for many bioactive compounds. Fluorenes, thiophenes, carbazoles, phenanthrenes, and many other useful cyclic bioactive molecules that are essential for pharmaceutical synthesis can be readily accessed from cyclic diaryliodonium salts. Particular focus has been given to the high optical activity and good enantiomeric excess of the products that facilitate the easy formation of many difficult-to-obtain optical isomers, such as atropisomers. This review aims to compile and summarize all the recent advances in synthesizing methodologies to prepare the important compounds where cyclic diaryliodonium salt is an integral part of the methodologies and would hopefully provide a good foundation for further research on this topic.
Collapse
Affiliation(s)
- Rakshanda Singhal
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Satya Prakash Choudhary
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Babita Malik
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Meenakshi Pilania
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| |
Collapse
|
5
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
6
|
Maurya NK, Yadav S, Chaudhary D, Kumar D, Ishu K, Kuram MR. Palladium-Catalyzed C(sp 3)-H Biarylation of 8-Methyl Quinolines with Cyclic Diaryliodonium Salts to Access Functionalized Biaryls and Fluorene Derivatives. J Org Chem 2022; 87:13744-13749. [PMID: 36198197 DOI: 10.1021/acs.joc.2c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we have developed the cyclic diaryliodonium salts as biarylating agents in the C(sp3)-H functionalization using 8-methyl quinoline as the intrinsic directing group. The oxidant-free reaction produces a vast array of the biarylated products with iodo functionality that can be further functionalized. Additionally, intramolecular C(sp3)-H functionalization in a stepwise manner under palladium-catalyzed conditions produced the fluorene derivatives in excellent yields.
Collapse
Affiliation(s)
- Naveen Kumar Maurya
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Yadav
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dhananjay Chaudhary
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dharmendra Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Km Ishu
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Malleswara Rao Kuram
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Sihag M, Soni R, Rani N, Kinger M, Kumar Aneja D. Recent Synthetic Applications of Hypervalent Iodine Reagents. A Review in Three Installments: Installment III. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Monika Sihag
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Rinku Soni
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Neha Rani
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Mayank Kinger
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Deepak Kumar Aneja
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| |
Collapse
|
8
|
Rani N, Soni R, Sihag M, Kinger M, Aneja DK. Combined Approach of Hypervalent Iodine Reagents and Transition Metals in Organic Reactions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Neha Rani
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| | - Rinku Soni
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| | - Monika Sihag
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| | - Mayank Kinger
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| | - Deepak K. Aneja
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| |
Collapse
|
9
|
Wu X, Ma P, Wang J. Copper‐catalyzed direct synthesis of arylated 8‐aminoquinolines through chelation assistance. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaqian Wu
- Department of Chemistry, College of Science Tianjin University Tianjin China
| | - Peng Ma
- Department of Chemistry, College of Science Tianjin University Tianjin China
| | - Jianhui Wang
- Department of Chemistry, College of Science Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| |
Collapse
|
10
|
Peng H, Liu Q, Sun Y, Luo B, Yu T, Huang P, Zhu D, Wen S. Tandem cyclization/arylation of diaryliodoniums via in situ constructed benzoxazole as a directing group for atom-economical transformation. Org Chem Front 2022. [DOI: 10.1039/d1qo01463c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linear diaryliodoniums often undergo only single arylation and leave equivalent aryl iodide as waste.
Collapse
Affiliation(s)
- Hui Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Qian Liu
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou 510006, People's Republic of China
| | - Yameng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Tianyian Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Daqian Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou 510006, People's Republic of China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| |
Collapse
|
11
|
Liu X, Wang L, Han J. ortho-Nitro-substituted diaryliodonium salts enabled regioselective cyclization of arylcarboxylic acids toward 3,4-naphthocoumarins. Org Biomol Chem 2022; 20:8628-8632. [DOI: 10.1039/d2ob01783k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We herein report an efficient regioselective cascade of arylation and cyclization of arylcarboxylic acids via Pd(ii)-activation of both C–I and vicinal C–NO2 bonds of ortho-nitro-substituted diaryliodonium salts.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
12
|
Feofanov M, Akhmetov V, Takayama R, Amsharov K. Transition-metal free synthesis of N-aryl carbazoles and their extended analogs. Org Biomol Chem 2021; 19:7172-7175. [PMID: 34369949 DOI: 10.1039/d1ob00940k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herein, we describe a facile synthesis of N-arylated carbazoles via ladderization of fluorinated oligophenylenes. The reaction consists of two subsequent nucleophilic substitutions triggered by an electronic transfer from dimsyl anions. The reaction allows the effective one-pot formation of at least six C-N bonds with pronounced selectivity to the C-F bond placement.
Collapse
Affiliation(s)
- Mikhail Feofanov
- Institute of Chemistry, Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle, Germany.
| | | | | | | |
Collapse
|
13
|
Fang MY, Chen LP, Huang L, Fang DM, Chen XZ, Wang BQ, Feng C, Xiang SK. Synthesis of Tribenzo[ b, d, f]azepines via Palladium-Catalyzed Annulation Reaction of 2-Iodobiphenyls with 2-Halogenoanilines. J Org Chem 2021; 86:9096-9106. [PMID: 34128663 DOI: 10.1021/acs.joc.1c01082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed annulation reaction of 2-iodobiphenyls with 2-halogenoanilines has been developed. A variety of 2-iodobiphenyls and 2-halogenoanilines can undergo this transformation. Diversified tribenzo[b,d,f]azepine derivatives can be synthesized in moderate to excellent yields according to this method.
Collapse
Affiliation(s)
- Mao-Ying Fang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Li-Ping Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Lin Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Dong-Mei Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Xiao-Zhen Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Chun Feng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Shi-Kai Xiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| |
Collapse
|
14
|
Abstract
Developments in synthetic chemistry are increasingly driven by improvements in the selectivity and sustainability of transformations. Bifunctional reagents, either as dual coupling partners or as a coupling partner in combination with an activating species, offer an atom-economic approach to chemical complexity, while suppressing the formation of waste. These reagents are employed in organic synthesis thanks to their ability to form complex organic architectures and empower novel reaction pathways. This Review describes several key bifunctional reagents by showcasing selected cornerstone research areas and examples, including radical reactions, C-H functionalization, cross-coupling, organocatalysis and cyclization reactions.
Collapse
|
15
|
Kaur M, Garg S, Malhi DS, Sohal HS. A Review on Synthesis, Reactions and Biological Properties of Seven Membered Heterocyclic Compounds: Azepine, Azepane, Azepinone. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825999210104222338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Seven membered heterocyclic Azepine and its derivatives have great pharmacological
and therapeutic implications. In this review, the literature of the last fifty years has
been exploited for the synthesis, reaction, and biological properties of these seven-member
heterocyclic compounds. Most of the mechanisms involved the ring expansion of either five
or six-membered compounds using various methods such as thermally, photo-chemically, and
microwave irradiation. The systematically designed schemes involve the synthesis of different
derivatives of azepine, azepinone, azepane, etc., using similar moieties by various researchers.
However, there is much work yet to be done in the biological section, as it is not
explored and reported in the literature; therefore, N-containing seven-membered heterocycles
still have much scope for the researchers.
Collapse
Affiliation(s)
- Manvinder Kaur
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Sonali Garg
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Dharambeer S. Malhi
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Harvinder S. Sohal
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| |
Collapse
|
16
|
Cheng C, Tu D, Zuo X, Wu Z, Wan B, Zhang Y. Palladium-Catalyzed Dual Coupling Reaction of 2-Iodobiphenyls with o-Bromoanilines through C–H Activation: An Approach for the Synthesis of Tribenzo[b,d,f]azepines. Org Lett 2021; 23:1239-1242. [DOI: 10.1021/acs.orglett.0c04192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cang Cheng
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Dongdong Tu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiang Zuo
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zechen Wu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Bin Wan
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
17
|
Kantarod K, Worakul T, Soorukram D, Kuhakarn C, Reutrakul V, Surawatanawong P, Wattanathana W, Leowanawat P. Dibenzopleiadiene-embeded polyaromatics via [4 + 3] annulative decarbonylation/decarboxylation. Org Chem Front 2021. [DOI: 10.1039/d0qo00942c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel and efficient sequential cross-coupling/annulation strategy is developed to construct structurally and optoelectronically diverse class of dibezopleiadiene-embeded polyaromatics.
Collapse
Affiliation(s)
- Kritchasorn Kantarod
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Thanapat Worakul
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Darunee Soorukram
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Chutima Kuhakarn
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Vichai Reutrakul
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Panida Surawatanawong
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Worawat Wattanathana
- Department of Materials Engineering
- Faculty of Engineering
- Kasetsart University
- Bangkok 10900
- Thailand
| | - Pawaret Leowanawat
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| |
Collapse
|
18
|
Xue C, Wang L, Han J. Palladium-Catalyzed Site-Selective Benzocyclization of Naphthoic Acids with Diaryliodonium Salts: Efficient Access to Benzanthrones. J Org Chem 2020; 85:15406-15414. [PMID: 33226241 DOI: 10.1021/acs.joc.0c02192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dual activation of both C-I and vicinal C-H bonds of diaryliodonium salts allowing for diarylation is a subject of rapid construction of π-extended frameworks. Here, we report palladium-catalyzed cascade of C8-arylation/intramolecular Friedel-Crafts acylation of α-naphthoic acids in the synthesis of benzanthrone derivatives. The step-economical protocol tolerates various substrates, which resulted in a potential molecular library for developing functional polycyclic scaffolds. The approach relies on the synergistic action of strong acid with palladium catalysts to form two bonds in a one-pot procedure.
Collapse
Affiliation(s)
- Chenwei Xue
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
19
|
Ding M, Hua W, Liu M, Zhang F. Pd-Catalyzed C(sp 3)-H Biarylation via Transient Directing Group Strategy. Org Lett 2020; 22:7419-7423. [PMID: 32946696 DOI: 10.1021/acs.orglett.0c02353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we describe a highly selective Pd-catalyzed C(sp3)-H biarylation of 2-methylbenzaldehydes using cyclic diaryliodonium salts as arylation reagents. The key strategy is the employment of tert-leucine as a bidentate transient directing group for the proximity-driven metalation to achieve reactivity and selectivity in C-H activation. Various functionalized biaryls bearing both aldehyde and iodine functional groups were prepared successfully, which could be further transformed into a wide range of compounds with potential applications in pharmaceutical chemistry and materials science.
Collapse
Affiliation(s)
| | | | | | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
20
|
Peng X, Sun Z, Kuang P, Li L, Chen J, Chen J. Copper-Catalyzed Selective Arylation of Nitriles with Cyclic Diaryl Iodonium Salts: Direct Access to Structurally Diversified Diarylmethane Amides with Potential Neuroprotective and Anticancer Activities. Org Lett 2020; 22:5789-5795. [PMID: 32677838 DOI: 10.1021/acs.orglett.0c01829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel, simple, and high-yielding approach for the preparation of diarylmethane amide derivatives has been developed by reacting cyclic diaryl iodonium salts with nitriles using CuCl as a catalyst. The procedure is efficient with high atom economy and a wide substrate range. Importantly, selective arylation of nitriles was obtained without affecting the phenyl amino/hydroxyl groups. Furthermore, two of the diarylmethane amides (3k, 3s) displayed excellent neuroprotective and anticancer activities.
Collapse
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Zhiqiang Sun
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Peihua Kuang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Ling Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Jingxuan Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510060, P.R. China
| |
Collapse
|
21
|
Chen XJ, Gui QW, Yi R, Yu X, Wu ZL, Huang Y, Cao Z, He WM. Copper(i)-catalyzed intermolecular cyanoarylation of alkenes: convenient access to α-alkylated arylacetonitriles. Org Biomol Chem 2020; 18:5234-5237. [PMID: 32602499 DOI: 10.1039/d0ob01055c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Cu(i)-catalyzed intermolecular cyanoarylation of alkenes with diaryliodonium salts as a radical arylating reagent and tetra-butylammonium cyanide as an electrophilic cyanating reagent was established. A broad range of α-alkylated arylacetonitriles were efficiently constructed in good to excellent yields under base- and oxidant-free and mild conditions.
Collapse
Affiliation(s)
- Xin-Jie Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Qing-Wen Gui
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, China.
| | - Rongnan Yi
- Department of Chemistry, Hunan University, Changsha 410082, China
| | - Xianyong Yu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Zhi-Lin Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Ying Huang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, China.
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, China.
| | - Wei-Min He
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, China.
| |
Collapse
|
22
|
Diaryliodoniums Salts as Coupling Partners for Transition-Metal Catalyzed C- and N-Arylation of Heteroarenes. Catalysts 2020. [DOI: 10.3390/catal10050483] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Owing to the pioneering works performed on the metal-catalyzed sp2 C–H arylation of indole and pyrrole by Sanford and Gaunt, N– and C-arylation involving diaryliodonium salts offers an attractive complementary strategy for the late-stage diversification of heteroarenes. The main feature of this expanding methodology is the selective incorporation of structural diversity into complex molecules which usually have several C–H bonds and/or N–H bonds with high tolerance to functional groups and under mild conditions. This review summarizes the main recent achievements reported in transition-metal-catalyzed N– and/or C–H arylation of heteroarenes using acyclic diaryliodonium salts as coupling partners.
Collapse
|