1
|
Jiang X, Wang R, Fan M, Song S, Wang Y, Zhang Q. Combination of 5-amino-4-nitro-1,2-dihydro-3 H-pyrazol-3-one and azine frameworks for insensitive, heat-resistant energetic materials. Dalton Trans 2025; 54:7056-7061. [PMID: 40190235 DOI: 10.1039/d5dt00488h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
5-Nitro-1,2,4-triazol-3-one (NTO) is an important insensitive and high-energy aromatic ketone compound in energetic materials. However, its relatively low thermostability (Td: 236.0 °C) limits its application in heat-resistant energetic materials. In this study, we utilized an NTO analogue (5-amino-4-nitro-1,2-dihydro-3H-pyrazol-3-one, ANPO) to prepare a series of new heat-resistant energetic compounds, NPX-10-NPX-14, whose thermal decomposition temperatures range from 311 °C to 386 °C, around 75-150 °C higher than that of NTO. At the same time, these five new heat-resistant energetic compounds exhibited low impact sensitivity (IS > 50 J) and friction sensitivity (FS > 360 N), such as NTO, demonstrating their potential as insensitive, heat-resistant energetic materials. In addition, the effects of structures on sensitivity and thermal stability are studied using quantum chemical methods. This work is expected to prompt further research on energetic pyrazolone in molecular design and offers guidance for the development of new heat-resistant energetic materials.
Collapse
Affiliation(s)
- Xiu'e Jiang
- National Key Laboratory of Solid Propulsion, Northwestern Polytechnical University, Shanxi Xi'an, 710065, China.
| | - Ruihui Wang
- National Key Laboratory of Solid Propulsion, Northwestern Polytechnical University, Shanxi Xi'an, 710065, China.
| | - Mingren Fan
- National Key Laboratory of Solid Propulsion, Northwestern Polytechnical University, Shanxi Xi'an, 710065, China.
| | - Siwei Song
- National Key Laboratory of Solid Propulsion, Northwestern Polytechnical University, Shanxi Xi'an, 710065, China.
| | - Yi Wang
- National Key Laboratory of Solid Propulsion, Northwestern Polytechnical University, Shanxi Xi'an, 710065, China.
| | - Qinghua Zhang
- National Key Laboratory of Solid Propulsion, Northwestern Polytechnical University, Shanxi Xi'an, 710065, China.
| |
Collapse
|
2
|
Ni P, Yang L, Yang J, Cheng R, Zhu W, Ma Y, Ye J. para-Selective, Direct C(sp 2)-H Alkylation of Electron-Deficient Arenes by the Electroreduction Process. J Org Chem 2023; 88:5248-5253. [PMID: 37023248 DOI: 10.1021/acs.joc.2c02412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Direct para-selective C(sp2)-H alkylation of electron-deficient arenes based on the electroreduction-enabled radical addition of alkyl bromides has been developed under mild conditions. In the absence of any metals and redox agents, the simple electrolysis system tolerates a variety of primary, secondary, and tertiary alkyl bromides and behaves as an important complement to the directed alkylation of the C(sp2)-H bond and the classic Friedel-Crafts alkylation. This electroreduction process provides a more straightforward, environmentally benign, and effective alkylation method for electron-deficient arenes.
Collapse
Affiliation(s)
- Pufan Ni
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Yang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiasheng Yang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ruihua Cheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiping Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yueyue Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Saikia S, Devi R, Gogoi P, Saikia L, Choudary BM, Raja T, Deka P, Deka RC. Regioselective Friedel-Crafts Acylation Reaction Using Single Crystalline and Ultrathin Nanosheet Assembly of Scrutinyite-SnO 2. ACS OMEGA 2022; 7:32225-32237. [PMID: 36120068 PMCID: PMC9476169 DOI: 10.1021/acsomega.2c03555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Peculiar physicochemical properties of two-dimensional (2D) nanomaterials have attracted research interest in developing new synthetic technology and exploring their potential applications in the field of catalysis. Moreover, ultrathin metal oxide nanosheets with atomic thickness exhibit abnormal surficial properties because of the unique 2D confinement effect. In this work, we present a facile and general approach for the synthesis of single crystalline and ultrathin 2D nanosheets assembly of scrutinyite-SnO2 through a simple solvothermal method. The structural and compositional characterization using X-ray diffraction (Rietveld refinement analysis), high-resolution transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and so on reveal that the as-synthesized 2D nanosheets are ultrathin and single crystallized in the scrutinyite-SnO2 phase with high purity. The ultrathin SnO2 nanosheets show predominant growth in the [011] direction on the main surface having a thickness of ca. 1.3 nm. The SnO2 nanosheets are further employed for the regioselective Friedel-Crafts acylation to synthesize aromatic ketones that have potential significance in chemical industry as synthetic intermediates of pharmaceuticals and fine chemicals. A series of aromatic substrates acylated over the SnO2 nanosheets have afforded the corresponding aromatic ketones with up to 92% yield under solvent-free conditions. Comprehensive catalytic investigations display the SnO2 nanosheet assembly as a better catalytic material compared to the heterogeneous metal oxide catalysts used so far in the view of its activity and reusability in solvent-free reaction conditions.
Collapse
Affiliation(s)
- Sudakhina Saikia
- Department
of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Rasna Devi
- Department
of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Pranjal Gogoi
- Catalysis
and Inorganic Chemistry Division, CSIR-National
Chemical Laboratory, Pune 411008, India
| | - Lakshi Saikia
- Materials
Sciences and Technology Division, CSIR-North
East Institute of Science and Technology, Jorhat 785006, India
| | | | - Thirumalaiswamy Raja
- Catalysis
and Inorganic Chemistry Division, CSIR-National
Chemical Laboratory, Pune 411008, India
| | - Pangkita Deka
- Department
of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
- Department
of Chemistry, Jorhat Engineering College, Garmur, Jorhat 785007, India
| | - Ramesh C. Deka
- Department
of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| |
Collapse
|
4
|
Visible-light-enabled ruthenium-catalyzed para-C−H difluoroalkylation of anilides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Zhao Y, Ju G, Tu G. Recent Advances in Transition-Metal-Catalyzed Selective C–H Alkoxycarbonyldifluoromethylation Reactions of Aromatic Substrates. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1522-7460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractFluorine is well-known as a very special element. Approximately 30% of agrochemicals and 20% of all drugs contain fluorine; most of those compounds have unique functions in biochemistry, pharmacy, and bioscience and those containing alkoxycarbonyldifluoromethyl functional groups often have irreplaceable roles. Therefore, the selective introduction of alkoxycarbonyldifluoromethylated functional groups into various aromatic substrates has significant practical application. This review describes recent advances in selective alkoxycarbonyldifluoromethylation of aromatic substrates by using different catalytic strategies (cyclometalated ruthenium complex, transient regulating and visible-light-induced strategies).1 Introduction2 para-C–H Alkoxycarbonyldifluoromethylation of Aromatic Derivatives2.1 Ruthenium Catalysis2.2 Palladium Catalysis2.3 Visible-Light Catalysis2.4 Iron Catalysis3 meta-C–H Alkoxycarbonyldifluoromethylation of Aromatic Derivatives3.1 Ruthenium Catalysis3.2 Palladium Catalysis4 The Influence of Transition Metals and Directing Groups on Site Selectivity of Alkoxycarbonyldifluoromethylation4.1 The Influence of Directing Groups on the Site Selectivity of Alkoxycarbonyldifluoromethylation4.2 The Influence of Transition Metals on the Site Selectivity of Alkoxycarbonyldifluoromethylation5 Conclusions
Collapse
Affiliation(s)
- Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University
- School of Chemistry and Chemical Engineering, Henan Normal University
| | - Guodong Ju
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University
| | - Guanglian Tu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University
| |
Collapse
|
6
|
Wang D, Xu X, Zhang J, Zhao Y. Ligand Promoted Olefination of Anilides for Indirectly Introducing Fluorinated Functional Groups via Palladium Catalyst. J Org Chem 2021; 86:2696-2705. [PMID: 33502195 DOI: 10.1021/acs.joc.0c02701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a palladium-catalyzed, ligand promoted, C-H fluorine-containing olefination of anilides with 4-bromo-3,3,4,4-tetrafluorobutene as the fluorinated reagent, which has a potential transformation into other compounds due to its -CF2CF2Br functional group. -CF2CF2H was obtained by using the mild reducing agent sodium borohydride. Bioactive compounds such as aminoglutethimide derivative and propham were well-tolerated in this reaction, both of which highlight the synthetic importance of this method.
Collapse
Affiliation(s)
- Dongjie Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P.R. China.,Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Xu Xu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P.R. China.,Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Jingyu Zhang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P.R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P.R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P.R. China
| |
Collapse
|