1
|
Son SD, Choi HY, Ko HM. B(C 6F 5) 3-Catalyzed Reductive Deoxygenation of Isatins for Indole Synthesis. J Org Chem 2025; 90:5662-5671. [PMID: 40207974 DOI: 10.1021/acs.joc.5c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
An efficient method for reductive deoxygenation of isatin derivatives using catalyst B(C6F5)3 and methylphenylsilane is described. This reaction proceeds rapidly under mild conditions, and the protocol provides a broad substrate scope. Notably, while general synthetic methods utilizing a combination of B(C6F5)3 and hydrosilanes smoothly reduce indoles to generate indolines, the present strategy represents the first reductive deoxygenation reaction for the formation of indoles without further reduction.
Collapse
Affiliation(s)
- Seung Deok Son
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Hoe Young Choi
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Haye Min Ko
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| |
Collapse
|
2
|
Dharavath P, Vaggu R, Manda R, Grée R, Das S. Visible-Light-Induced Insertion of Siloxycarbene into Amide N-H Bonds: Synthesis of Carbinolamides from Acylsilanes and Amides. J Org Chem 2025; 90:1727-1732. [PMID: 39831927 DOI: 10.1021/acs.joc.4c02818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The insertion of carbene into secondary amide N-H bonds remains underexplored in organic synthesis. In this work, we discovered the visible-light-induced insertion of siloxycarbene into amide N-H bonds. This metal-free, facile reaction proceeds with atom economy under mild conditions with a broad range of secondary N-H amides, including benzanilide, acetanilide, oxindole, isatin, quinolinone, and maleimide, affording stable N- and O-acetals in excellent isolated yields. In addition, the chemoselective insertion reveals the robustness of this chemical transformation.
Collapse
Affiliation(s)
- Praveen Dharavath
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Vaggu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajesh Manda
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - René Grée
- Institute for Chemical Sciences in Rennes, University of Rennes, CNRS UMR 6226, 35000 Rennes, France
| | - Saibal Das
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Liu M, Shi L, Zheng L, Gao Q, Zhang Z, Xiang J. Electroselective and Controlled Cross-Coupling of Isoindolinones with Alcohols. J Org Chem 2025. [PMID: 39884959 DOI: 10.1021/acs.joc.4c02838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
A novel and efficient electrochemical method for electroselective and controlled cross-coupling of isoindolinones with equivalent alcohols has been developed without the need for metal catalysts and strong bases under mild conditions. The reaction provides a novel strategy for the controllable and effective synthesis of 3-alkoxyl and N-hydroxymethyl-substituted isoindolinones, which is adjusted by 4-OH-TEMPO and tolerates various substrates. This protocol is an efficient tool for the construction of C-O and C-N bonds with high chemoselectivity.
Collapse
Affiliation(s)
- Mian Liu
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Lingling Shi
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Lianyou Zheng
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Qiansong Gao
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Zhuoqi Zhang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| | - Jinbao Xiang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P. R. China
| |
Collapse
|
4
|
Campos PRO, Alberto EE. Pnictogen and Chalcogen Salts as Alkylating Agents. CHEM REC 2024; 24:e202400139. [PMID: 39548904 DOI: 10.1002/tcr.202400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Indexed: 11/18/2024]
Abstract
Alkylation reactions and their products are considered crucial in various contexts. Synthetically, the alkylation of a nucleophile is usually promoted using hazardous alkyl halides. Here, we aim to highlight the potential of pnictogen (ammonium or phosphonium) and chalcogen salts (sulfonium, selenonium, and telluronium) to function as alkylating agents. These compounds can be considered as non-volatile electrophilic alkyl reservoirs. We will center our discussion on the strategies developed in recent years to expand the synthetic utility of these salts in terms of transferable alkyl groups, substrate scope, and product selectivity.
Collapse
Affiliation(s)
- Philipe Raphael O Campos
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), 31.270-901, Belo Horizonte, MG, Brazil
| | - Eduardo E Alberto
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), 31.270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
5
|
Templ J, Schnürch M. Strategies for Using Quaternary Ammonium Salts as Alternative Reagents in Alkylations. Chemistry 2024; 30:e202400675. [PMID: 38587031 DOI: 10.1002/chem.202400675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/09/2024]
Abstract
Alkylation reactions are pivotal in organic chemistry, with wide-ranging utilization across various fields of applied synthetic chemistry. However, conventional reagents employed in alkylations often pose substantial health and exposure risks. Quaternary ammonium salts (QAS) present a promising alternative for these transformations offering significantly reduced hazards as they are non-cancerogenic, non-mutagenic, non-flammable, and non-corrosive. Despite their potential, their use in direct organic transformations remains relatively unexplored. This review outlines strategies for utilizing QAS as alternative reagents in alkylation reactions, providing researchers with safer approaches to chemical synthesis.
Collapse
Affiliation(s)
- Johanna Templ
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060, Wien, AUSTRIA
| | - Michael Schnürch
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9/163, 1060, Wien, AUSTRIA
| |
Collapse
|
6
|
Patil RD, Pratihar S. Ruthenium(II)-Catalyzed Hydrogenation and Tandem (De)Hydrogenation via Metal-Ligand Cooperation: Base- and Solvent-Assisted Switchable Selectivity. J Org Chem 2024; 89:1361-1378. [PMID: 36283058 DOI: 10.1021/acs.joc.2c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A versatile, selective, solvent (methanol vs ethanol)- and base (potassium vs lithium carbonate)-assisted switchable synthesis of saturated ketone and α-methyl saturated ketone from α,β-unsaturated ketone is developed. Mechanistic aspects, evaluated from spectroscopic studies, in situ monitoring of the reaction progress, control studies, and labeling studies, further indicate the involvement of a tandem dehydrogenation-condensation-hydrogenation sequence in the reaction, in which the interconvertible coordination mode (imino N → Ru and amido N-Ru) of coordinated imidazole with Ru(II)-para-cymene is crucial, without which the efficiency and selectivity of the catalyst are completely lost. The catalyst demonstrates good efficiency, selectivity, and functional group tolerance and displays a broad scope (69 examples) for monomethylation and hydrogenation of unsaturated chalcones, double methylation of ketones, and N-methylation of amines.
Collapse
Affiliation(s)
- Rahul Daga Patil
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Sanjay Pratihar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| |
Collapse
|
7
|
Deng H, Xiang L, Yuan Z, Lin B, He Y, Hou Q, Ruan Y, Zhang J. Facile access to S-methyl dithiocarbamates with sulfonium or sulfoxonium iodide as a methylation reagent. Org Biomol Chem 2023; 21:6474-6478. [PMID: 37523154 DOI: 10.1039/d3ob00932g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Efficient access to S-methyl dithiocarbamates was achieved with sulfonium or sulfoxonium iodide as a methylation reagent. This method is reliable for the synthesis of dithiocarbamates from primary or secondary amines, with sulfoxonium iodide demonstrating more robust methylation capability than sulfonium iodide. Moreover, it also enables facile access to S-trideuteromethyl dithiocarbamates via sulfoxonium metathesis between sulfoxonium iodide and DMSO-d6 with high yields.
Collapse
Affiliation(s)
- Huiying Deng
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Lingling Xiang
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Zhijun Yuan
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Bohong Lin
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Yiting He
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Qi Hou
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Yaoping Ruan
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Jing Zhang
- Artemisinin Research Center and The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| |
Collapse
|
8
|
Templ J, Gjata E, Getzner F, Schnürch M. Monoselective N-Methylation of Amides, Indoles, and Related Structures Using Quaternary Ammonium Salts as Solid Methylating Agents. Org Lett 2022; 24:7315-7319. [PMID: 36190781 PMCID: PMC9578047 DOI: 10.1021/acs.orglett.2c02766] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/30/2022]
Abstract
We herein report the use of phenyl trimethylammonium iodide (PhMe3NI) as a safe, nontoxic, and easy-to-handle reagent for an absolutely monoselective N-methylation of amides and related compounds as well as for the N-methylation of indoles. In addition, we expanded the method to N-ethylation using PhEt3NI. The ease of operational setup, high yields of ≤99%, high functional group tolerance, and especially the excellent monoselectivity for amides make this method attractive for late-stage methylation of bioactive compounds.
Collapse
Affiliation(s)
- Johanna Templ
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Wien, Austria
| | - Edma Gjata
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Wien, Austria
| | - Filippa Getzner
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Wien, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Wien, Austria
| |
Collapse
|
9
|
Xu XH, Hao EJ, Shi Z, Dong ZB. Easy S-Alkylation of Arylthioureas and 2-Mercaptobenzothiazoles Using Tetraalkylammonium Salts under Transition-Metal-Free Conditions. J Org Chem 2022; 87:9675-9687. [PMID: 35896442 DOI: 10.1021/acs.joc.2c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly-efficient and practical method for S-alkylation of arylthioureas was reported. Using tetraalkylammonium salts as alkylation reagents, a series of 68 S-substituted aryl-isothioureas were obtained in good to excellent yields under transition-metal-free conditions. The protocol features simple performance, broad functional group tolerance, good to excellent yields, and easily available starting materials, showing potential synthetic value for the preparation of diverse biologically or pharmaceutically active compounds.
Collapse
Affiliation(s)
- Xiao-Hu Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Er-Jun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhen Shi
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.,Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.,Engineering Research Center of Phosphorus Resources Development and Utilization, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.,Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
10
|
Tandem silylation—desilylation reaction in the synthesis of N-methyl carboxamides. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Templ J, Schnürch M. Selective α-Methylation of Aryl Ketones Using Quaternary Ammonium Salts as Solid Methylating Agents. J Org Chem 2022; 87:4305-4315. [PMID: 35253422 PMCID: PMC8938946 DOI: 10.1021/acs.joc.1c03158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 11/28/2022]
Abstract
We describe the use of phenyl trimethylammonium iodide (PhMe3NI) as an alternative methylating agent for introducing a CH3 group in α-position to a carbonyl group. Compared to conventional methylating agents, quaternary ammonium salts have the advantages of being nonvolatile, noncancerogenic, and easy-to-handle solids. This regioselective method is characterized by ease of operational setup, use of anisole as green solvent, and yields up to 85%.
Collapse
Affiliation(s)
- Johanna Templ
- Institute of Applied Synthetic
Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Wien, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic
Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Wien, Austria
| |
Collapse
|
12
|
Tetramethylammonium Fluoride: Fundamental Properties and Applications in C-F Bond-Forming Reactions and as a Base. Catalysts 2022. [DOI: 10.3390/catal12020233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nucleophilic ionic sources of fluoride are essential reagents in the synthetic toolbox to access high added-value fluorinated building blocks unattainable by other means. In this review, we provide a concise description and rationale of the outstanding features of one of these reagents, tetramethylammonium fluoride (TMAF), as well as disclosing the different methods for its preparation, and how its physicochemical properties and solvation effects in different solvents are intimately associated with its reactivity. Furthermore, herein we also comprehensively describe its historic and recent utilization, up to December 2021, in C-F bond-forming reactions with special emphasis on nucleophilic aromatic substitution fluorinations with a potential sustainable application in industrial settings, as well as its use as a base capable of rendering unprecedented transformations.
Collapse
|
13
|
Petitpoisson L, Pichette A, Alsarraf J. Towards better syntheses of partially methylated carbohydrates? Org Chem Front 2022. [DOI: 10.1039/d2qo00893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We give an overview of the reported synthetic strategies towards partially methylated glycosides and discuss how better protocols could stem from catalytic site-selective transformations of carbohydrates and cleaner methylation reagents.
Collapse
Affiliation(s)
- Lucas Petitpoisson
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| | - André Pichette
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| | - Jérôme Alsarraf
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| |
Collapse
|
14
|
Genre C, Benaissa I, Godou T, Pinault M, Cantat T. Additive-free selective methylation of secondary amines with formic acid over a Pd/In 2O 3 catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01626a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Formic acid is the sole carbon and hydrogen source in the additive-free catalytic methylation of amines.
Collapse
Affiliation(s)
- Caroline Genre
- CEA, CNRS, NIMBE, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Idir Benaissa
- CEA, CNRS, NIMBE, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Timothé Godou
- CEA, CNRS, NIMBE, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Mathieu Pinault
- CEA, CNRS, NIMBE, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Thibault Cantat
- CEA, CNRS, NIMBE, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
15
|
Mathada BS, Yernale NG, Basha JN, Badiger J. An insight into the advanced synthetic recipes to access ubiquitous indole heterocycles. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153458] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Moulay S. S-methylation of organosulfur substrates: A comprehensive overview. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1925672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Saad Moulay
- Laboratoire de Chimie-Physique Moléculaire et Macromoléculaire, Département de Génie des Procédés, Faculté de Technologie, Université Saâd Dahlab de Blida, Blida, Algeria
| |
Collapse
|
17
|
Tong X, Luo SS, Shen H, Zhang S, Cao T, Luo YP, Huang LL, Ma XT, Liu XW. Nickel-catalyzed defluorinative alkylation of C(sp 2)–F bonds. Org Chem Front 2021. [DOI: 10.1039/d1qo00549a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A nickel-catalyzed defluorinative alkylation of unactivated C(sp2)–F electrophiles using commercially available trialkylaluminum reagents, thus forming the C(sp2)–C(sp3) bonds is reported.
Collapse
Affiliation(s)
- Xue Tong
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Si-Si Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Hua Shen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Shu Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Tian Cao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Yi-Peng Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Long-Ling Huang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Xi-Tao Ma
- Hospital of Chengdu University of Traditional Chinese Medicine
- Chengdu 610072
- China
| | - Xiang-Wei Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| |
Collapse
|
18
|
Sheehy KJ, Bateman LM, Flosbach NT, Breugst M, Byrne PA. Competition between N and O: use of diazine N-oxides as a test case for the Marcus theory rationale for ambident reactivity. Chem Sci 2020; 11:9630-9647. [PMID: 34094230 PMCID: PMC8162281 DOI: 10.1039/d0sc02834g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/23/2020] [Indexed: 11/21/2022] Open
Abstract
The preferred site of alkylation of diazine N-oxides by representative hard and soft alkylating agents was established conclusively using the 1H-15N HMBC NMR technique in combination with other NMR spectroscopic methods. Alkylation of pyrazine N-oxides (1 and 2) occurs preferentially on nitrogen regardless of the alkylating agent employed, while O-methylation of pyrimidine N-oxide (3) is favoured in its reaction with MeOTf. As these outcomes cannot be explained in the context of the hard/soft acid/base (HSAB) principle, we have instead turned to Marcus theory to rationalise these results. Marcus intrinsic barriers (ΔG ‡ 0) and Δr G° values were calculated at the DLPNO-CCSD(T)/def2-TZVPPD/SMD//M06-2X-D3/6-311+G(d,p)/SMD level of theory for methylation reactions of 1 and 3 by MeI and MeOTf, and used to derive Gibbs energies of activation (ΔG ‡) for the processes of N- and O-methylation, respectively. These values, as well as those derived directly from the DFT calculations, closely reproduce the observed experimental N- vs. O-alkylation selectivities for methylation reactions of 1 and 3, indicating that Marcus theory can be used in a semi-quantitative manner to understand how the activation barriers for these reactions are constructed. It was found that N-alkylation of 1 is favoured due to the dominant contribution of Δr G° to the activation barrier in this case, while O-alkylation of 3 is favoured due to the dominant contribution of the intrinsic barrier (ΔG ‡ 0) for this process. These results are of profound significance in understanding the outcomes of reactions of ambident reactants in general.
Collapse
Affiliation(s)
- Kevin J Sheehy
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork College Road Cork Ireland
| | - Lorraine M Bateman
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork College Road Cork Ireland
- School of Pharmacy, University College Cork College Road Ireland
- SSPC (Synthesis and Solid State Pharmaceutical Centre) Cork Ireland
| | - Niko T Flosbach
- Department für Chemie, Universität zu Köln Greinstraße 4 50939 Köln Germany
| | - Martin Breugst
- Department für Chemie, Universität zu Köln Greinstraße 4 50939 Köln Germany
| | - Peter A Byrne
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork College Road Cork Ireland
- SSPC (Synthesis and Solid State Pharmaceutical Centre) Cork Ireland
| |
Collapse
|
19
|
Röther A, Kretschmer R. Syntheses of Bis(N-heterocyclic carbene)s and their application in main-group chemistry. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|