1
|
Kim N, Choi M, Suh SE, Chenoweth DM. Aryne Chemistry: Generation Methods and Reactions Incorporating Multiple Arynes. Chem Rev 2024; 124:11435-11522. [PMID: 39383091 DOI: 10.1021/acs.chemrev.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Arynes hold significance for the efficient fusion of (hetero) arenes with diverse substrates, advancing the construction of complex molecular frameworks. Employing multiple equivalents of arynes is particularly effective in the rapid formation of polycyclic cores found in optoelectronic materials and bioactive compounds. However, the inherent reactivity of arynes often leads to side reactions, yielding unanticipated products and underlining the importance of a detailed investigation into the use of multiple arynes to fine-tune their reactivity. This review centers on methodologies and syntheses in organic reactions involving multiple arynes, categorizing based on mechanisms like cycloadditions, σ-bond insertions, nucleophilic additions, and ene reactions, and discusses aryne polymerization. The categorization based on these mechanisms includes two primary approaches: the first entails multiple aryne engagement within a single step while the second approach involves using a single equivalent of aryne sequentially across multiple steps, with both requiring strict reactivity control to ensure precise aryne participation in each respective step. Additionally, the review provides an in-depth analysis of the selection of aryne precursors, organized chronologically and by activation strategy, offering a comprehensive background that supports the main theme of multiple aryne utilization. The expectation remains that this comprehensive review will be invaluable in designing advanced syntheses engaging multiple arynes.
Collapse
Affiliation(s)
- Nayoung Kim
- Ajou Energy Science Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Myungsoo Choi
- Ajou Energy Science Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon 16499, Republic of Korea
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Zhang Y, Zang Z, Gao Y, Li W, Zhu T. Hydrosilylation of Arynes with Silanes and Silicon-Based Polymer. Chemistry 2024; 30:e202401440. [PMID: 38870472 DOI: 10.1002/chem.202401440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Benzyne derived from hexadehydrogenated Diels Alder (HDDA) reactions was found to be an efficient hydrosilylation acceptors. Various silanes can react smoothly with HDDA-derived benzyne to give the arylation products. Lewis acid such as boron trifluoride etherate can accelerate these hydrosilylation reactions. Polyhydromethylsiloxane (PHMS), a widely used organosilicon polymer, was also successfully modified using our method. About 5 % of Si-H bonds in the polymer were inserted by benzynes, giving a functional PHMS with much more solubility in methanol and with a blue-emitting fluorescence behavior. Mechanism research shows that the insertion of benzyne into the Si-H bond probably undergoes a synergistic pathway, which is quite different from the traditional radical-initiated hydrosilylation or transition-metal-catalyzed hydrosilylation.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Zhenming Zang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Yuan Gao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Wenchang Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Tingshun Zhu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Xi ZW, He Y, Liu LQ, Wang YC, Zeng HY. Three-Component Domino Reaction of Thioamide, Isonitriles, and Water: Selective Synthesis of 1,2,4-Thiadiazolidin-3-ones and ( E)- N-(1,2-Diamino-2-thioxoethylidene)benzamides. J Org Chem 2024; 89:8315-8325. [PMID: 36693028 DOI: 10.1021/acs.joc.2c01969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The three-component domino reaction of thioamides, benzyl isocyanide, and water in the presence of a catalytic amount of both Pd(dppf)Cl2 and Cu(OAc)2 afforded novel 1,2,4-thiadiazolidin-3-one cyclic compounds, whereas the same reaction with tertiary alkylisonitriles in the presence of rare earth metal salt [La(OTf)3] resulted in (E)-N-(1,2-diamino-2-thioxoethylidene)benzamide open-chain products. This divergent reaction enabled the one-pot construction of five (N-S, C-S, C-O, and two C-N) or four (C-S, C-N, C-O, and C-C) new chemical bonds. Mechanism studies indicate that the oxygen atom of the product was derived from H2O.
Collapse
Affiliation(s)
- Zhi-Wei Xi
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China
| | - Yan He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Li-Qiu Liu
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China
| | - Ying-Chun Wang
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou 416000, P. R. China
| | - Hui-Ying Zeng
- The State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou 730000, P. R. China
| |
Collapse
|
4
|
Divyavani C, Padmaja P, Reddy PN. Isocyanide-based Multicomponent Reactions (IMCRs) in Water or Aqueous Biphasic Systems. Curr Org Synth 2024; 21:140-165. [PMID: 37005400 DOI: 10.2174/1570179420666230330170845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Isocyanide is an intriguing one-carbon synthon that is frequently employed in a variety of carbon-carbon and carbon-heteroatom bond-forming reactions. Isocyanide-based multicomponent reactions (IMCRs) are effective synthetic tools in organic synthesis for the preparation of complex heterocyclic molecules. The IMCRs in water have become an attractive research direction, enabling simultaneous growth of both IMCRs and green solvents towards ideal organic synthesis. OBJECTIVE The goal of this review is to provide a general overview of IMCRs in water or biphasic aqueous systems for accessing various organic molecules, as well as an examination of their benefits and mechanistic insights. CONCLUSION High atom economies, mild reaction conditions, high yields, and catalyst-free processes are crucial features of these IMCRs in water or biphasic aqueous systems.
Collapse
Affiliation(s)
- Chitteti Divyavani
- Department of Chemistry, Sri Padmavathi Women's Degree & PG College, Tirupati, Andhra Pradesh, India
| | - Pannala Padmaja
- Centre for Semio Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | | |
Collapse
|
5
|
O'Sullivan L, Patel KV, Rowley BC, Brownsey DK, Gorobets E, Gelfand BS, Van Humbeck JF, Derksen DJ. Regioselective Synthesis of C3-Hydroxyarylated Pyrazoles. J Org Chem 2021; 87:846-854. [PMID: 34905376 DOI: 10.1021/acs.joc.1c02518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pyrazoles are ubiquitous structures in medicinal chemistry. We report the first regioselective route to C3-hydroxyarylated pyrazoles obtained through reaction of pyrazole N-oxides with arynes using mild conditions. Importantly, this method does not require the C4 and C5 positions of the pyrazole to be functionalized to observe regioselectivity. Using this method, we completed the synthesis of a recently reported JAK 1/2 inhibitor. Our synthesis produces the desired product in 4 steps from commercially available starting materials.
Collapse
Affiliation(s)
- Leonie O'Sullivan
- Department of Chemistry, University of Calgary, Calgary, T2N 1N4, AB, Canada
| | - Ketul V Patel
- Department of Chemistry, University of Calgary, Calgary, T2N 1N4, AB, Canada
| | - Ben C Rowley
- Department of Chemistry, University of Calgary, Calgary, T2N 1N4, AB, Canada
| | - Duncan K Brownsey
- Department of Chemistry, University of Calgary, Calgary, T2N 1N4, AB, Canada
| | - Evgueni Gorobets
- Department of Chemistry, University of Calgary, Calgary, T2N 1N4, AB, Canada
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary, Calgary, T2N 1N4, AB, Canada
| | | | - Darren J Derksen
- Department of Chemistry, University of Calgary, Calgary, T2N 1N4, AB, Canada
| |
Collapse
|
6
|
Zhu C, Zhang J, Hoye TR. De novo Assembly of the Benzenoid Ring as a Core Strategy for Synthesis of the Isoindolinone Natural Products Isohericerin, Erinacerin A, and Sterenin A. Org Lett 2021; 23:7550-7554. [PMID: 34543031 DOI: 10.1021/acs.orglett.1c02752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we describe the use of the hexadehydro-Diels-Alder (HDDA) reaction for the de novo construction of the isoindolinone scaffold and its application to the synthesis of the title natural products. The key isoindolinone-forming HDDA reaction involved an unprecedented substrate motif in which an amide carbonyl group was conjugated to the 4π 1,3-diyne component. In addition, a dimethylsilyl (-SiMe2H) substituent was exploited to trigger a Fleming-Tamao-Kumada oxidation for the installation of an essential phenolic hydroxyl group.
Collapse
Affiliation(s)
- Chenlong Zhu
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Juntian Zhang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Fluegel LL, Hoye TR. Hexadehydro-Diels-Alder Reaction: Benzyne Generation via Cycloisomerization of Tethered Triynes. Chem Rev 2021; 121:2413-2444. [PMID: 33492939 PMCID: PMC8008985 DOI: 10.1021/acs.chemrev.0c00825] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hexadehydro-Diels-Alder (HDDA) reaction is the thermal cyclization of an alkyne and a 1,3-diyne to generate a benzyne intermediate. This is then rapidly trapped, in situ, by a variety of species to yield highly functionalized benzenoid products. In contrast to nearly all other methods of aryne generation, no other reagents are required to produce an HDDA benzyne. The versatile and customizable nature of the process has attracted much attention due not only to its synthetic potential but also because of the fundamental mechanistic insights the studies often afford. The authors have attempted to provide here a comprehensive compilation of publications appearing by mid-2020 that describe experimental results of HDDA reactions.
Collapse
Affiliation(s)
- Lucas L Fluegel
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Le A, Lee D. Selectivity between an Alder–ene reaction and a [2 + 2] cycloaddition in the intramolecular reactions of allene-tethered arynes. Org Chem Front 2021. [DOI: 10.1039/d1qo00459j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Substituent-dependent reactivity and selectivity in the intramolecular reactions of arynes tethered with an allene are described.
Collapse
Affiliation(s)
- Anh Le
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| | - Daesung Lee
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| |
Collapse
|
9
|
Huang K, Liu JB, Chen ZF, Wang YC, Yadav S, Qiu G. Palladium-Catalyzed Imidoylation-Triggered [2 + 2 + 1] Cyclization of Internal Alkyne with Isocyanides. Org Lett 2020; 22:5931-5935. [PMID: 32662274 DOI: 10.1021/acs.orglett.0c02019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, a palladium-catalyzed [2 + 2 + 1] cyclization of internal alkynes with double isocyanides is described. This facile procedure is efficient for synthesizing various pyrrolo[3,2-c]quinolin-2-amines. The reaction worked well with a broad reaction scope. In the process, it is believed that sequential double isocyanide insertion, 6-exo-dig cyclization of alkyne, and addition of an imino group are involved.
Collapse
Affiliation(s)
- Keke Huang
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Jin-Biao Liu
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zhi-Feng Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Yu-Chao Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Sarita Yadav
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| |
Collapse
|
10
|
Mies T, Ma TK, Barrett AGM. Syntheses of polyfunctional aromatic compounds from non-aromatic precursors. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Tarasova OA, Nedolya NA, Albanov AI, Trofimov BA. 2‐Amino‐5‐(cyanomethylsulfanyl)‐1
H
‐pyrroles from Propargylamines, Isothiocyanates, and Bromoacetonitrile by One‐Pot Synthetic Protocol. ChemistrySelect 2020. [DOI: 10.1002/slct.202000577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Olga A. Tarasova
- An Unsaturated Heteroatom Compounds Laboratory A. E. Favorsky Irkutsk Institute of Chemistry, Siberian BranchRussian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Nina A. Nedolya
- An Unsaturated Heteroatom Compounds Laboratory A. E. Favorsky Irkutsk Institute of Chemistry, Siberian BranchRussian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Alexander I. Albanov
- An Unsaturated Heteroatom Compounds Laboratory A. E. Favorsky Irkutsk Institute of Chemistry, Siberian BranchRussian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Boris A. Trofimov
- An Unsaturated Heteroatom Compounds Laboratory A. E. Favorsky Irkutsk Institute of Chemistry, Siberian BranchRussian Academy of Sciences 1 Favorsky Str. 664033 Irkutsk Russian Federation
| |
Collapse
|