1
|
Xu M, Li YB, Wang H, Glorius F, Qi X. Mechanism Switch Between Radical-Polar Crossover and Radical Buffering. Angew Chem Int Ed Engl 2025; 64:e202500522. [PMID: 40080046 DOI: 10.1002/anie.202500522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
Radical-polar crossover (RPC) is a classic concept that bridges one- and two-electron chemistry. It has been widely used in Cr-catalyzed carbonyl addition reactions to clarify the formation of alkyl chromium(III) intermediate and subsequent carbonyl insertion. Herein, we proposed an orthogonal bonding model, the radical buffering scenario, for Cr-catalyzed carbonyl alkylation. This radical bonding model features the radical dissociation from the alkyl chromium(III) complex followed by the Cr(II)-carbonyl-coupled radical addition to form the C─C bond. The mechanism switch between the radical and polar bonding models is affected by the radical stability, radical nucleophilicity, radical size, and the presence of an α-heteroatom or α-π bond. The collaborative computational and experimental studies have verified the reliability of the radical mechanism. More importantly, we demonstrated that this radical buffering scenario possesses a different stereoselectivity control model from that in the RPC scenario. A general enantioselectivity and diastereoselectivity control model derived from the multiple ligand-radical interactions is thus established for CrCl2/bisoxazoline-catalyzed asymmetric radical addition.
Collapse
Affiliation(s)
- Minghao Xu
- College of Chemistry and Molecular Sciences, State Key Laboratory of Power Grid Environmental Protection, Wuhan University, Wuhan, 430072, P.R. China
| | - Yan-Bo Li
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Huamin Wang
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, State Key Laboratory of Power Grid Environmental Protection, Wuhan University, Wuhan, 430072, P.R. China
| |
Collapse
|
2
|
Tang SY, Wang ZJ, Ao Y, Wang N, Huang HM. Photoredox/Cr-catalyzed enantioselective radical-polar crossover transformation via C-H functionalization. Nat Commun 2025; 16:1354. [PMID: 39904991 PMCID: PMC11794612 DOI: 10.1038/s41467-025-56372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Asymmetric multicomponent reactions that aim to control multiple chiral centers with high selectivity in a single step remain an on-gonging challenge. The realm of enantioselective radical-polar crossover transformation achieved through C-H Functionalization has yet to be fully explored. Herein, we present a successful description of a photoredox/Cr-catalyzed enantioselective three-component (hetero)arylalkylation of 1,3-dienes through C-H functionalization. A diverse array of chiral homoallylic alcohols could be obtained in good to excellent yields, accompanied by outstanding enantioselectivity. The asymmetric radical-polar crossover transformation could build two chiral centers simultaneously and demonstrates broad substrate tolerance, accommodating various drug-derived aldehydes, (hetero)aromatics, and 1,3-diene derivatives. Preliminary mechanistic studies indicate the involvement of a radical intermediate, with the chiral allylic chromium species reacting with various aliphatic and aromatic aldehydes through Zimmerman-Traxler transition states enabled by dual photoredox and chiral chromium catalysis.
Collapse
Affiliation(s)
- Si-Yuan Tang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhan-Jie Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yu Ao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ning Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
3
|
Mondal S, Dumur F, Gigmes D, Sibi MP, Bertrand MP, Nechab M. Enantioselective Radical Reactions Using Chiral Catalysts. Chem Rev 2022; 122:5842-5976. [DOI: 10.1021/acs.chemrev.1c00582] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shovan Mondal
- Department of Chemistry, Syamsundar College, Shyamsundar 713424, West Bengal, India
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Mukund P. Sibi
- Department of Chemistry and Biochemistry North Dakota State University, Fargo, North Dakota 58108, United States
| | - Michèle P. Bertrand
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Malek Nechab
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| |
Collapse
|
4
|
Huang H, Bellotti P, Daniliuc CG, Glorius F. Radical Carbonyl Propargylation by Dual Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Huan‐Ming Huang
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Peter Bellotti
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
5
|
Huang HM, Bellotti P, Daniliuc CG, Glorius F. Radical Carbonyl Propargylation by Dual Catalysis. Angew Chem Int Ed Engl 2020; 60:2464-2471. [PMID: 33022838 DOI: 10.1002/anie.202011996] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Indexed: 12/26/2022]
Abstract
Carbonyl propargylation has been established as a valuable tool in the realm of carbon-carbon bond forming reactions. The 1,3-enyne moiety has been recognized as an alternative pronucleophile in the above transformation through an ionic mechanism. Herein, we report for the first time, the radical carbonyl propargylation through dual chromium/photoredox catalysis. A library of valuable homopropargylic alcohols bearing all-carbon quaternary centers could be obtained by a catalytic radical three-component coupling of 1,3-enynes, aldehydes and suitable radical precursors (41 examples). This redox-neutral multi-component reaction occurs under very mild conditions and shows high functional group tolerance. Remarkably, bench-stable, non-toxic, and inexpensive CrCl3 could be employed as a chromium source. Preliminary mechanistic investigations suggest a radical-polar crossover mechanism, which offers a complementary and novel approach towards the preparation of valuable synthetic architectures from simple chemicals.
Collapse
Affiliation(s)
- Huan-Ming Huang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
6
|
Bai J, Chen B, Zhang G. Enantioselective Synthesis of
cis
‐2,
6‐Disubstituted
‐4‐methylene Tetrahydropyrans via Chromium Catalysis
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Bai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Bin Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Guozhu Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|