1
|
Davies AM, Londhe SS, Smith ER, Tunge JA. Single-Step Synthesis of γ-Ketoacids through a Photoredox-Catalyzed Dual Decarboxylative Coupling of α-Oxo Acids and Maleic Anhydrides. Org Lett 2023. [PMID: 37991504 DOI: 10.1021/acs.orglett.3c03258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A photocatalytic methodology for the single step synthesis of γ-ketoacids from α-ketoacids has been developed. This method employs maleic anhydrides as traceless synthetic equivalents of acrylic acids, achieving a selective cross-coupling via a dual decarboxylative strategy, where molecular CO2 is released as the only waste byproduct. The method has also been expanded to incorporate a highly regioselective, 3-component coupling with various alcohols to access functionalized γ-ketoesters.
Collapse
Affiliation(s)
- Alex M Davies
- Department of Chemistry, The University of Kansas, 1567 Irving Hill Rd., Lawrence, Kansas 66045, United States
| | - Shrikant S Londhe
- Department of Chemistry, The University of Kansas, 1567 Irving Hill Rd., Lawrence, Kansas 66045, United States
| | - Emma R Smith
- Department of Chemistry, The University of Kansas, 1567 Irving Hill Rd., Lawrence, Kansas 66045, United States
| | - Jon A Tunge
- Department of Chemistry, The University of Kansas, 1567 Irving Hill Rd., Lawrence, Kansas 66045, United States
| |
Collapse
|
2
|
Srinivas B, Shakeena K, Kota DL, Abhinav V, Eswar P, Geetha Sravani R, Sampath Pavan Kumar A, Indukuri K, Dhanaraju KA, Murali Krishna Kumar M, Alla SK. Iron(III)-Catalyzed Regioselective Synthesis of Electron-Rich Benzothiazoles from Aryl Isothiocyanates via C-H Functionalization. J Org Chem 2023; 88:4458-4471. [PMID: 36912001 DOI: 10.1021/acs.joc.2c03078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
We report herein a direct synthetic route for the preparation of 2-arylbenzothiazoles using aryl isothiocyanates and electron-rich arenes. The synthetic route involves triflic acid promoted addition of the arenes to aryl isothiocyanates followed by FeCl3-catalyzed C-S bond formation via C-H functionalization. The approach provides the advantage of synthesis of benzothiazoles without the conventional use of aryl aldehyde/carboxylic acid precursors employing the less expensive iron(III) catalyst.
Collapse
Affiliation(s)
- Bokka Srinivas
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Kotari Shakeena
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Durgeswari Lakkavarapu Kota
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Valeti Abhinav
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Pyla Eswar
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Rongali Geetha Sravani
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Anandam Sampath Pavan Kumar
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Kiran Indukuri
- Chemistry-Discovery Research Lab, Dextro Synthesis Private Limited, Hyderabad, Telangana 500090, India
| | | | | | - Santhosh Kumar Alla
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| |
Collapse
|
3
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
4
|
Singla D, Paul K. Ru(II)-Catalyzed Regioselective C(5)-H Functionalization of Quinazolinone-Coumarin Conjugates: Synthesis and Photophysical Studies. J Org Chem 2022; 87:10673-10683. [PMID: 35930499 DOI: 10.1021/acs.joc.2c00872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The quinazolinone template offers an exciting potential for transforming molecules into useful bioactivity. Herein, we report the first regioselective C-5 alkenylation of quinazolinone-coumarin conjugates via ruthenium(II) catalyst using amide as a weak directing group. This methodology permits excellent regioselectivity, extensive substrate tolerance, and mild reaction conditions. In addition, it generates interesting fluorophores that show positive solvatochromism in the range from 404 nm (toluene) to 541 nm (methanol).
Collapse
Affiliation(s)
- Dinesh Singla
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| |
Collapse
|
5
|
Wang HH, Wang XD, Yin GF, Zeng YF, Chen J, Wang Z. Recent Advances in Transition-Metal-Catalyzed C–H Alkylation with Three-Membered Rings. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hui-Hong Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Xiao-Dong Wang
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, People’s Republic of China
| | - Gao-Feng Yin
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, People’s Republic of China
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, People’s Republic of China
| | - Jinjin Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, People’s Republic of China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, People’s Republic of China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
6
|
Thakur R, Singh I, Paul K. Ruthenium(II)‐Catalyzed C‐H Alkenylation of 1,8‐Naphthalimide with Cyclic Imide as a Weakly Coordinating Directing Group. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rekha Thakur
- Thapar Institute of Engineering and Technology Chemistry INDIA
| | - Iqubal Singh
- Thapar University: Thapar Institute of Engineering and Technology Chemistry INDIA
| | - Kamaldeep Paul
- Thapar University School of Chemistry and Biochemistry Chemistry departmentThapar University, Patiala 147004 Patiala INDIA
| |
Collapse
|
7
|
He Y, Zheng T, Huang YH, Dong L. Rh(III)-Catalyzed olefination to build diverse oxazole derivatives from functional alkynes. Org Biomol Chem 2021; 19:4937-4942. [PMID: 33983356 DOI: 10.1039/d1ob00507c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Rh(iii)-catalyzed olefination reaction of oxazoles to generate diverse oxazole skeleton derivatives has been realized by directly using oxazole as the directing group. The reaction could tolerate many functional groups, affording complex oxazole derivatives with long chain alkenyls in moderate to good yields, which might find applications in the construction of diverse compounds.
Collapse
Affiliation(s)
- Yuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ting Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yin-Hui Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Luo J, Fu Q. Aldehyde‐Directed C(
sp
2
)−H Functionalization under Transition‐Metal Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Junfei Luo
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 P. R. China
| | - Qiang Fu
- School of Pharmacy Southwest Medical University Luzhou 610041 P. R. China
- Department of Pharmacy The Affiliated Hospital of Southwest Medical University Luzhou 646000 P. R. China
| |
Collapse
|
9
|
Li XR, Chen SQ, Fan J, Li CJ, Wang X, Liu ZW, Shi XY. Controllable Tandem [3+2] Cyclization of Aromatic Aldehydes with Maleimides: Rhodium(III)-Catalyzed Divergent Synthesis of Indane-Fused Pyrrolidine-2,5-dione. Org Lett 2020; 22:8808-8813. [DOI: 10.1021/acs.orglett.0c03113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xin-Ran Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Si-Qi Chen
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Juan Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Chao-Jun Li
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Xue Wang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Xian-Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
10
|
Rani G, Luxami V, Paul K. Traceless directing groups: a novel strategy in regiodivergent C-H functionalization. Chem Commun (Camb) 2020; 56:12479-12521. [PMID: 32985634 DOI: 10.1039/d0cc04863a] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The use of functional groups as internal ligands for assisting C-H functionalization, termed the chelation assisted strategy, is emerging as one of the most powerful tools for construction of C-C and C-X bonds from inert C-H bonds. However, there are various directing groups which cannot be either removed after functionalization or require some additional steps or reagents for their removal, thereby limiting the scope of structural diversity of the products, and the step and atom economy of the system. These limitations are overcome by the use of the traceless directing group (TDG) strategy wherein functionalization of the substrate and removal of the directing group can be carried out in a one pot fashion. Traceless directing groups serve as the most ideal chelation assisted strategy with a high degree of reactivity and selectivity without any requirement for additional steps for their removal. The present review overviews the use of various functional groups such as carboxylic acids, aldehydes, N-oxides, nitrones, N-nitroso amines, amides, sulfoxonium ylides and silicon tethered directing groups for assisting transition metal catalyzed C-H functionalization reactions in the last decade.
Collapse
Affiliation(s)
- Geetika Rani
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, India.
| | | | | |
Collapse
|
11
|
Dey A, Volla CMR. Traceless Bidentate Directing Group Assisted Cobalt-Catalyzed sp2-C–H Activation and [4 + 2]-Annulation Reaction with 1,3-Diynes. Org Lett 2020; 22:7480-7485. [DOI: 10.1021/acs.orglett.0c02664] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arnab Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|