1
|
Shi Q, Zhou T, Zhou Y, Wang ZH, Xue YJ, Chen YJ. Discovery of tetracyclic 1,2,4-triazoline-fused dibenzo[b,f][1,4]oxazepine as a potent anti-colorectal cancer agent with good efficacy and low toxicity. Bioorg Med Chem 2025; 125:118203. [PMID: 40267749 DOI: 10.1016/j.bmc.2025.118203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
A series of tetracyclic 1,2,4-triazoline-fused dibenzo[b,f][1,4]oxazepines were evaluated as novel anti-tumor agents. MTT assay conducted in four human cancer cell lines (SW620, A549, MCF-7, HepG2) showed that 1,2,4-triazoline-fused dibenzo[b,f][1,4]oxazepine decorated by a methyl group on the benzene ring of 1,2,4-triazoline moiety exhibited a superior antiproliferative activity against SW620 cells with a IC50 value of 0.86 μM. The above compound was thus chosen for further investigation on its anti-colorectal cancer (CRC) effect, and displayed inhibitory effects on the proliferation of HCT116 and CT26 cells with IC50 values of 0.96 μM and 1.71 μM, respectively. Furthermore, this compound could effectively suppress colony formation and induce cell cycle arrest and apoptosis in SW620 cells. Western blot analysis demonstrated that it exerted the anti-tumor activity through blocking the PI3K-AKT signaling pathway. Next, we examined its in vivo anti-tumor activity by establishing a subcutaneous CT26 xenograft model, and found that it significantly reduced the tumor sizes with limited toxicity. Collectively, these findings suggest that this compound could be utilized as a promising candidate against CRC.
Collapse
Affiliation(s)
- Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Tao Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yuqi Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yao-Jie Xue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ya-Jing Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Xiao Y, Huang DW, Liao J, Wang B, Li YL, Wang JY. Fe(III)-Catalyzed Ring Expansion of Cyclopropenone from Olefins via Radicals to Access Pyrone and Indanone Derivatives. Org Lett 2025; 27:814-820. [PMID: 39797810 DOI: 10.1021/acs.orglett.4c04492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
A novel approach for the synthesis of pyrone and indanone derivatives utilizing Fe(III)-catalyzed reductive radical ring expansion of olefins and cyclopropenone has been proposed. The preliminary mechanism study shows that the alkyl radical is formed by hydrogen atom transfer, which can open the tension ring and then generate the intermediate. There are two paths for the intermediate: when there is a hydroxyl group at the β-position of the olefin, the reaction produces pyrones, and otherwise 1-indanone is generated. This method has mild conditions and wide substrate adaptability and allows the indanone fragment to be conveniently accessed.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Dong-Wei Huang
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Jie Liao
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Bei Wang
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Yu-Long Li
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Ji-Yu Wang
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
- Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs, Chengdu 610039, P. R. China
| |
Collapse
|
3
|
Rodríguez LG, Bonjoch J, Bradshaw B. Metal-Catalyzed Hydrogen Atom Transfer (MHAT) Hydroalkylation with Electron-Deficient Alkynes. Org Lett 2024; 26:10553-10558. [PMID: 39606916 DOI: 10.1021/acs.orglett.4c03943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
We present a novel strategy for olefin construction via the reductive coupling of electron-neutral alkenes with electron-deficient alkynes under metal-catalyzed hydrogen atom transfer conditions. This methodology provides selective access to both trans and the more challenging-to-synthesize cis isomers and permits the olefin to be installed next to sterically hindered centers, key factors in the synthesis of biologically active compounds. The reaction exhibits broad functional group tolerance and proceeds under mild, nontoxic conditions with high atom efficiency.
Collapse
Affiliation(s)
- Laura G Rodríguez
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Barcelona 08028, Spain
| | - Josep Bonjoch
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Barcelona 08028, Spain
| | - Ben Bradshaw
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Barcelona 08028, Spain
| |
Collapse
|
4
|
Zhao JQ, Chen ZP. The Progress of Reductive Coupling Reaction by Iron Catalysis. CHEM REC 2024; 24:e202400108. [PMID: 39289832 DOI: 10.1002/tcr.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/21/2024] [Indexed: 09/19/2024]
Abstract
The transition metal catalyzed coupling reaction has revolutionized the strategies for forging the carbon-carbon bonds. In contrast to traditional cross-coupling methods using pre-prepared nucleophilic organometallic reagents, reductive coupling reactions for the C-C bonds formation provide some advantages. Because both coupling partners are reduced in the final products using a stoichiometric amount of a reductant, this approach not only avoids the need to use sensitive organometallic species, but also provides an orthogonal and complementary access to classical coupling reaction. Notably, the reductive coupling reactions feature readily available fragments, promote good step economy, exhibit high functional group tolerance and unique chemoselectivity, which have propelled their increasingly popular in the organic synthesis. In recent years, due to the low price, minimal toxicity, and environmentally benign character, iron-catalyzed carbon-carbon coupling reactions have garnered significant attention from the organic synthetic chemists and pharmacologists, especially the iron-catalyzed reductive coupling. This review aims to provide an insightful overview of recent advances in iron-catalyzed reductive coupling reactions, and to illustrate their possible reaction mechanisms.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Zhang-Pei Chen
- College of Sciences Northeastern University, Shenyang, 110819, China
| |
Collapse
|
5
|
Buzsaki SR, Mason SM, Kattamuri PV, Serviano JMI, Rodriguez DN, Wilson CV, Hood DM, Ellefsen JD, Lu YC, Kan J, West JG, Miller SJ, Holland PL. Fe/Thiol Cooperative Hydrogen Atom Transfer Olefin Hydrogenation: Mechanistic Insights That Inform Enantioselective Catalysis. J Am Chem Soc 2024; 146:17296-17310. [PMID: 38875703 PMCID: PMC11209773 DOI: 10.1021/jacs.4c04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Asymmetric hydrogenation of activated olefins using transition metal catalysis is a powerful tool for the synthesis of complex molecules, but traditional metal catalysts have difficulty with enantioselective reduction of electron-neutral, electron-rich, and minimally functionalized olefins. Hydrogenation based on radical, metal-catalyzed hydrogen atom transfer (mHAT) mechanisms offers an outstanding opportunity to overcome these difficulties, enabling the mild reduction of these challenging olefins with selectivity that is complementary to traditional hydrogenations with H2. Further, mHAT presents an opportunity for asymmetric induction through cooperative hydrogen atom transfer (cHAT) using chiral thiols. Here, we report insights from a mechanistic study of an iron-catalyzed achiral cHAT reaction and leverage these insights to deliver stereocontrol from chiral thiols. Kinetic analysis and variation of silane structure point to the transfer of hydride from silane to iron as the likely rate-limiting step. The data indicate that the selectivity-determining step is quenching of the alkyl radical by thiol, which becomes a more potent H atom donor when coordinated to iron(II). The resulting iron(III)-thiolate complex is in equilibrium with other iron species, including FeII(acac)2, which is shown to be the predominant off-cycle species. The enantiodetermining nature of the thiol trapping step enables enantioselective net hydrogenation of olefins through cHAT using a commercially available glucose-derived thiol catalyst with up to 80:20 enantiomeric ratio. To the best of our knowledge, this is the first demonstration of asymmetric hydrogenation via iron-catalyzed mHAT. These findings advance our understanding of cooperative radical catalysis and act as a proof of principle for the development of enantioselective iron-catalyzed mHAT reactions.
Collapse
Affiliation(s)
- Sarah R. Buzsaki
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Savannah M. Mason
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | - Juan M. I. Serviano
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Dinora N. Rodriguez
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Conner V. Wilson
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Drew M. Hood
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Jonathan D. Ellefsen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Yen-Chu Lu
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Jolie Kan
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Julian G. West
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
6
|
Lang M, Tardieu D, Pousse B, Compain P, Kern N. Diastereoselective access to C, C-glycosyl amino acids via iron-catalyzed, auxiliary-enabled MHAT coupling. Chem Commun (Camb) 2024; 60:3154-3157. [PMID: 38407341 DOI: 10.1039/d3cc06249j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Access to C,C-glycosyl amino acids as a novel class of glycomimetics is reported by means of radical generation, intermolecular addition and stereoselective reduction via a metal-induced hydrogen atom transfer (MHAT) sequence. The 'matched' coupling of exo-D-glycals with an enantiopure dehydroalanine bearing a (R)-configured benzyl oxazolidinone enables a singular case of two-fold diastereocontrol under iron catalysis. In the common exo-D-glucal series, the nature of the C-2 substituent was found to play a key role from both reactivity and stereocontrol aspects.
Collapse
Affiliation(s)
- Mylène Lang
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Damien Tardieu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Benoit Pousse
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Nicolas Kern
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087, Strasbourg, France.
| |
Collapse
|
7
|
Bonciolini S, Pulcinella A, Leone M, Schiroli D, Ruiz AL, Sorato A, Dubois MAJ, Gopalakrishnan R, Masson G, Della Ca' N, Protti S, Fagnoni M, Zysman-Colman E, Johansson M, Noël T. Metal-free photocatalytic cross-electrophile coupling enables C1 homologation and alkylation of carboxylic acids with aldehydes. Nat Commun 2024; 15:1509. [PMID: 38374079 PMCID: PMC10876646 DOI: 10.1038/s41467-024-45804-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
In contemporary drug discovery, enhancing the sp3-hybridized character of molecular structures is paramount, necessitating innovative synthetic methods. Herein, we introduce a deoxygenative cross-electrophile coupling technique that pairs easily accessible carboxylic acid-derived redox-active esters with aldehyde sulfonyl hydrazones, employing Eosin Y as an organophotocatalyst under visible light irradiation. This approach serves as a versatile, metal-free C(sp3)-C(sp3) cross-coupling platform. We demonstrate its synthetic value as a safer, broadly applicable C1 homologation of carboxylic acids, offering an alternative to the traditional Arndt-Eistert reaction. Additionally, our method provides direct access to cyclic and acyclic β-arylethylamines using diverse aldehyde-derived sulfonyl hydrazones. Notably, the methodology proves to be compatible with the late-stage functionalization of peptides on solid-phase, streamlining the modification of intricate peptides without the need for exhaustive de-novo synthesis.
Collapse
Affiliation(s)
- Stefano Bonciolini
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
| | - Antonio Pulcinella
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
| | - Matteo Leone
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, Cedex, France
| | - Debora Schiroli
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
- SynCat Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Adrián Luguera Ruiz
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
- PhotoGreen Lab, Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | - Andrea Sorato
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
| | - Maryne A J Dubois
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ranganath Gopalakrishnan
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Geraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, Cedex, France
| | - Nicola Della Ca'
- SynCat Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, Purdie Building, North Haugh University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Magnus Johansson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Gharpure SJ, Chavan RS, Narang SR. Iron-Mediated Hydrogen Atom Transfer Radical Cyclization of Alkenyl Indoles and Pyrroles Gives Their Fused Derivatives: Total Synthesis of Bruceolline E and H. Org Lett 2024. [PMID: 38341858 DOI: 10.1021/acs.orglett.4c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
The iron-mediated hydrogen atom transfer (HAT) reaction is efficaciously employed for the synthesis of dihydropyrroloindoles and dihydropyrrolizines via 5-exo-trig radical cyclization where indoles and pyrroles are used as an acceptor. This radical approach has also been extended for the synthesis of tetrahydrocyclopenta[b]indolones via the Baldwin-disfavored 5-endo-trig cyclization pathway. The formal synthesis of bruceolline J and the total synthesis of bruceollines E and H have been expeditiously carried out by employing the former strategy.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rupali S Chavan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Simran R Narang
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
9
|
Mayerhofer VJ, Lippolis M, Teskey CJ. Dual-Catalysed Intermolecular Reductive Coupling of Dienes and Ketones. Angew Chem Int Ed Engl 2024; 63:e202314870. [PMID: 37947372 DOI: 10.1002/anie.202314870] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
We report a mild, catalytic method for the intermolecular reductive coupling of feedstock dienes and styrenes with ketones. Our conditions allow concomitant formation of a cobalt hydride species and single-electron reduction of ketones. Subsequent selective hydrogen-atom transfer from the cobalt hydride generates an allylic radical which can selectively couple with the persistent radical-anion of the ketone. This radical-radical coupling negates unfavourable steric interactions of ionic pathways and avoids the unstable alkoxy radical of previous radical olefin-carbonyl couplings, which were limited, as a result, to aldehydes. Applications of this novel and straightforward approach include the efficient synthesis of drug molecules, key intermediates in drug synthesis and site-selective late-stage functionalisation.
Collapse
Affiliation(s)
- Victor J Mayerhofer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Martina Lippolis
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Christopher J Teskey
- Institute of Organic Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
10
|
Puig J, Bonjoch J, Bradshaw B. Isocyanides as Acceptor Groups in MHAT Reactions with Unactivated Alkenes. Org Lett 2023; 25:6539-6543. [PMID: 37644914 PMCID: PMC10496133 DOI: 10.1021/acs.orglett.3c02358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 08/31/2023]
Abstract
The use of isocyanides as acceptor groups in metal-hydride hydrogen atom transfer (MHAT) coupling reactions with nonactivated alkenes to form heterocycles is described. Monosubstituted alkenes couple and cyclize directly, whereas more substituted alkenes proceed via a two-step, one-pot procedure involving MHAT reductive cyclization followed by a MHAT Minisci coupling upon the addition of acid. To highlight the utility of the methodology, a diverse variety of substituted heterocycles such as phenanthridines, indoles, and isoquinolines were prepared.
Collapse
Affiliation(s)
- Jordi Puig
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Josep Bonjoch
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Ben Bradshaw
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Mondal B, Hazra S, Chatterjee A, Patel M, Saha J. Fe-Catalyzed Hydroallylation of Unactivated Alkenes with Vinyl Cyclopropanes. Org Lett 2023. [PMID: 37481744 DOI: 10.1021/acs.orglett.3c02105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Catalytic, reductive C-C bond formation between alkenes and vinyl cyclopropane (VCP) through hydrogen atom transfer (MHAT) is developed. Despite VCP's use as probes in radical-clock experiments, translation of this manifold into synthetic methods for accessing elusive C-C bonds remains largely unexplored. This work represents the first foray into this front where the high chemoselectivity of MHAT for alkene over VCP was pivotal for realizing the strategy. This method exhibits a broad scope, high functional group tolerance, and useful applications.
Collapse
Affiliation(s)
- Biplab Mondal
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Lucknow 226014, India
| | - Subhadeep Hazra
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Lucknow 226014, India
| | - Ayan Chatterjee
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Lucknow 226014, India
| | - Manveer Patel
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Lucknow 226014, India
| | - Jaideep Saha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali 160062, India
| |
Collapse
|
12
|
Saladrigas M, Gómez-Bengoa E, Bonjoch J, Bradshaw B. Four-Step Synthesis of (-)-4-epi-Presilphiperfolan-8α-ol by Intramolecular Iron Hydride Atom Transfer-Mediated Ketone-Alkene Coupling and Studies to Access trans-Hydrindanols with a Botryane Scaffold. Chemistry 2023; 29:e202203286. [PMID: 36537992 DOI: 10.1002/chem.202203286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
From an (R)-(+)-pulegone-derived building block that incorporates the stereo-defined tertiary carbon bearing a methyl group, as found in the targeted sesquiterpenoid, a four-step synthesis of (-)-4-epi-presilphiperfolan-8-α-ol was achieved. The key processes involved are a ring-closing metathesis leading to a bridged alkene-tethered ketone and its subsequent FeIII -mediated metal-hydride atom transfer (MHAT) transannular cyclization. This synthetic method, implying an irreversible addition of a carbon-centered radical upon a ketone by means of a hydrogen atom transfer upon the alkoxy radical intermediate, was also applied in the synthesis of trans-fused hydrindanols structurally related to botrydial compounds.
Collapse
Affiliation(s)
- Mar Saladrigas
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Enrique Gómez-Bengoa
- Departamento de Química Orgánica I, Universidad del País Vasco, Manuel Lardizábal 3, 20018, San Sebastián, Spain
| | - Josep Bonjoch
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Ben Bradshaw
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| |
Collapse
|
13
|
Pulcinella A, Bonciolini S, Lukas F, Sorato A, Noël T. Photocatalytic Alkylation of C(sp 3 )-H Bonds Using Sulfonylhydrazones. Angew Chem Int Ed Engl 2023; 62:e202215374. [PMID: 36394188 PMCID: PMC10108173 DOI: 10.1002/anie.202215374] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/18/2022]
Abstract
The ability to construct C(sp3 )-C(sp3 ) bonds from easily accessible reagents is a crucial, yet challenging endeavor for synthetic organic chemists. Herein, we report the realization of such a cross-coupling reaction, which combines N-sulfonyl hydrazones and C(sp3 )-H donors through a diarylketone-enabled photocatalytic hydrogen atom transfer and a subsequent fragmentation of the obtained alkylated hydrazide. This mild and metal-free protocol was employed to prepare a wide array of alkyl-alkyl cross-coupled products and is tolerant of a variety of functional groups. The application of this chemistry further provides a preparatively useful route to various medicinally-relevant compounds, such as homobenzylic ethers, aryl ethyl amines, β-amino acids and other moieties which are commonly encountered in approved pharmaceuticals, agrochemicals and natural products.
Collapse
Affiliation(s)
- Antonio Pulcinella
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefano Bonciolini
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Florian Lukas
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Andrea Sorato
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Wang S, König B. Katalytische Erzeugung von Carbanionen durch Carbonyl‐Umpolung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shun Wang
- Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 93053 Regensburg Deutschland
| | - Burkhard König
- Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 93053 Regensburg Deutschland
| |
Collapse
|
15
|
Zhang T, Yu M, Huang H. Fe-catalyzed Fukuyama-type indole synthesis triggered by hydrogen atom transfer. Chem Sci 2021; 12:10501-10505. [PMID: 34447542 PMCID: PMC8356753 DOI: 10.1039/d1sc03058b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/05/2021] [Indexed: 02/03/2023] Open
Abstract
Fe, Co, and Mn hydride-initiated radical olefin additions have enjoyed great success in modern synthesis, yet the extension of other hydrogen radicalophiles instead of olefins remains largely elusive. Herein, we report an efficient Fe-catalyzed intramolecular isonitrile-olefin coupling reaction delivering 3-substituted indoles, in which isonitrile was firstly applied as the hydrogen atom acceptor in the radical generation step by MHAT. The protocol features low catalyst loading, mild reaction conditions, and excellent functional group tolerance.
Collapse
Affiliation(s)
- Tianze Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei 230026 P. R. China
| | - Min Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei 230026 P. R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
16
|
Silva TS, Coelho F. Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances. Beilstein J Org Chem 2021; 17:1565-1590. [PMID: 34290837 PMCID: PMC8275869 DOI: 10.3762/bjoc.17.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
Olefin double-bond functionalization has been established as an excellent strategy for the construction of elaborate molecules. In particular, the hydroalkylation of olefins represents a straightforward strategy for the synthesis of new C(sp3)–C(sp3) bonds, with concomitant formation of challenging quaternary carbon centers. In the last 20 years, numerous hydroalkylation methodologies have emerged that have explored the diverse reactivity patterns of the olefin double bond. This review presents examples of olefins acting as electrophilic partners when coordinated with electrophilic transition-metal complexes or, in more recent approaches, when used as precursors of nucleophilic radical species in metal hydride hydrogen atom transfer reactions. This unique reactivity, combined with the wide availability of olefins as starting materials and the success reported in the construction of all-carbon C(sp3) quaternary centers, makes hydroalkylation reactions an ideal platform for the synthesis of molecules with increased molecular complexity.
Collapse
Affiliation(s)
- Thiago S Silva
- Laboratory of Synthesis of Natural Products and Drugs, Department of Organic Chemistry, Chemistry Institute, University of Campinas, PO Box 6154 - 13083-970, Campinas - SP, Brazil
| | - Fernando Coelho
- Laboratory of Synthesis of Natural Products and Drugs, Department of Organic Chemistry, Chemistry Institute, University of Campinas, PO Box 6154 - 13083-970, Campinas - SP, Brazil
| |
Collapse
|
17
|
Wang S, König B. Catalytic Generation of Carbanions through Carbonyl Umpolung. Angew Chem Int Ed Engl 2021; 60:21624-21634. [PMID: 33991000 PMCID: PMC8518712 DOI: 10.1002/anie.202105469] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Carbonyl Umpolung is a powerful strategy in organic chemistry to construct complex molecules. Over the last few years, versatile catalytic approaches for the generation of acyl anion equivalents from carbonyl compounds have been developed, but methods to obtain alkyl carbanions from carbonyl compounds in a catalytic fashion are still at an early stage. This Minireview summarizes recent progress in the generation of alkyl carbanions through catalytic carbonyl Umpolung. Two different catalytic approaches can be utilized to enable the generation of alkyl carbanions from carbonyl compounds: the catalytic Wolff–Kishner reaction and the catalytic single‐electron reduction of carbonyl compounds and imines. We discuss the reaction scope, mechanistic insights, and synthetic applications of the methods as well as potential future developments.
Collapse
Affiliation(s)
- Shun Wang
- Faculty of Chemistry and Pharmacy University of Regensburg Universitaetsstrasse 31 93053 Regensburg Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy University of Regensburg Universitaetsstrasse 31 93053 Regensburg Germany
| |
Collapse
|
18
|
Kurma SH, Sridhar B, Bhimapaka CR. Direct Access for the Regio- and Stereoselective Synthesis of N-Alkenylpyrazoles and Chromenopyrazoles. J Org Chem 2021; 86:2271-2282. [PMID: 33465310 DOI: 10.1021/acs.joc.0c02421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A highly regio- and stereoselective method was developed for the preparation of N-alkenylpyrazoles and chromenopyrazoles by the reaction of N-tosylhydrazones and salicyl N-tosylhydrazones with alkynes under neat conditions in the presence of La(OTf)3. The present study was found to be efficient and convenient for direct access to N-alkenylpyrazoles and chromenopyrazoles through C-C, C-N, and C-O bond forming reactions. Structure assignment of N-alkenylpyrazole compound 5c was confirmed by X-ray analysis.
Collapse
|
19
|
Saladrigas M, Puig J, Bonjoch J, Bradshaw B. Iron-Catalyzed Radical Intermolecular Addition of Unbiased Alkenes to Aldehydes. Org Lett 2020; 22:8111-8115. [PMID: 33017537 DOI: 10.1021/acs.orglett.0c03081] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The intermolecular reductive radical coupling of aldehydes with nonactivated alkenes, employing metal hydride atom transfer (MHAT) catalysis with a combination of FeII and FeIII salts, is described. This constitutes the first use of aldehydes as viable acceptor groups in MHAT reactions. The insights gained in this study led to the reexamination of the previously reported intramolecular version of the reaction, and the addition of FeII salts allowed the development of a more efficient second-generation approach.
Collapse
Affiliation(s)
- Mar Saladrigas
- Laboratori de Quı́mica Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain
| | - Jordi Puig
- Laboratori de Quı́mica Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain
| | - Josep Bonjoch
- Laboratori de Quı́mica Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain
| | - Ben Bradshaw
- Laboratori de Quı́mica Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain
| |
Collapse
|
20
|
Sieber JD, Agrawal T. Recent Developments in C–C Bond Formation Using Catalytic Reductive Coupling Strategies. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Metal-catalyzed reductive coupling processes have emerged as a powerful methodology for the introduction of molecular complexity from simple starting materials. These methods allow for an orthogonal approach to that of redox-neutral strategies for the formation of C–C bonds by enabling cross-coupling of starting materials not applicable to redox-neutral chemistry. This short review summarizes the most recent developments in the area of metal-catalyzed reductive coupling utilizing catalyst turnover by a stoichiometric reductant that becomes incorporated in the final product.1 Introduction2 Ni Catalysis3 Cu Catalysis4 Ru, Rh, and Ir Catalysis4.1 Alkenes4.2 1,3-Dienes4.3 Allenes4.4 Alkynes4.5 Enynes5 Fe, Co, and Mn Catalysis6 Conclusion and Outlook
Collapse
|
21
|
Turner OJ, Hirst DJ, Murphy JA. Hydrogen Atom Transfer‐Mediated Domino Cyclisation Reaction to Access (Spiro)Quinazolinones. Chemistry 2020; 26:3026-3029. [DOI: 10.1002/chem.201905712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Oliver J. Turner
- GlaxoSmithKline, Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G11XL UK
| | - David J. Hirst
- GlaxoSmithKline, Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - John A. Murphy
- Department of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G11XL UK
| |
Collapse
|