1
|
Li X, Liu J, Song R, Luo X, Luo H. Rhodium(III)-Catalyzed Switchable β-C(sp 2)-H Alkenylation and Alkylation of Acyclic Enamides with Allyl Alcohols. Org Lett 2024; 26:3673-3678. [PMID: 38639408 DOI: 10.1021/acs.orglett.4c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Herein, rhodium(III)-catalyzed β-C(sp2)-H alkenylation and alkylation of enamides are presented using readily accessible allylic alcohols by switching the reaction conditions. This tunable transformation has been applied to a wide range of substrates and typically proceeded with excellent regioselectivity and stereoselectivity as well as with good functional group tolerance. The catalytic system offers an efficient approach for synthesizing various functionalized enamides bearing N-(2Z,4E)-butadiene and (Z)-β-C(sp2)-H alkylated enamides. In addition, mechanistic experiments suggest that Rh(III)-catalyzed C-H activation is not related to the critical step.
Collapse
Affiliation(s)
- Xiaolan Li
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Jie Liu
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Ruixin Song
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xuzhong Luo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Haiqing Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
2
|
Dong J, Zhang T, Chen Y, Sheng C, Wang Y, Zhang X. A Tandem Regiospecific [3 + 2] Annulation/Ring Cleavage Reaction for the Synthesis of β-Ketoenamides. J Org Chem 2024; 89:2800-2806. [PMID: 38294361 DOI: 10.1021/acs.joc.3c02717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A series of β-ketoenamines was synthesized from various phenacyl sulfoxides bearing 1-methyl-1H-tetrazole and oximes in moderate to excellent yields. The proposed mechanism involved the generation of α-sulfines from sulfoxides through thermolytic elimination, regiospecific formal [3 + 2] annulations, and elimination of SO2. This protocol provides convenient access to a variety of synthetically valuable N-unprotected β-enaminones with absolute Z selectivity.
Collapse
Affiliation(s)
- Jun Dong
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Tuojiang Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Youwei Chen
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Chengcai Sheng
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Yanqing Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Xuehua Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| |
Collapse
|
3
|
Li X, Luo H, Song R, Zhang Y, Gong X, Cai H, Luo X. Selective Cross-Dehydrogenative Coupling of Various Acyclic Enamides with Heteroarenes via Rh(III)-Catalyzed C-H Activation. Org Lett 2023; 25:5262-5267. [PMID: 37417807 DOI: 10.1021/acs.orglett.3c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The developed methodology describes an efficient Rh(III)-catalyzed oxidative C-H/C-H cross-coupling between acyclic enamides and heteroarenes. This cross dehydrogenative coupling (CDC) reaction offers advantages, including excellent regioselectivity and stereoselectivity, good functional group compatibility, and a broad substrate scope. Mechanistically, Rh(III)-catalyzed β-C(sp2)-H activation of acyclic enamides is proposed to be the critical step.
Collapse
Affiliation(s)
- Xiaolan Li
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Haiqing Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Ruixin Song
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yuting Zhang
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xian Gong
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Hu Cai
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xuzhong Luo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
4
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Zhang X, Yang TM, Hu LM, Hu XH. Stereoselective Iron-Catalyzed Alkylation of Enamides with Cyclopropanols via Oxidative C(sp 2)–H Functionalization. Org Lett 2022; 24:8677-8682. [DOI: 10.1021/acs.orglett.2c03563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xing Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tian-Ming Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lu-Min Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xu-Hong Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Liu Q, Yong JY, Zhang J, Ban T, Li XQ. C-H acylation of aniline derivatives with α-oxocarboxylic acids using ruthenium catalyst. Org Biomol Chem 2022; 20:6890-6896. [PMID: 35972339 DOI: 10.1039/d2ob01212j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and convenient synthetic strategy for ruthenium(II)-catalyzed ortho-acylation of N-(2-pyridyl)-anilines using α-oxycarboxylic acids as acyl sources is described. The procedure can smoothly proceed under mild conditions, showing good functional group tolerance. Valuable ortho-acylated aniline products have been obtained with moderate to good yields. Furthermore, the reaction could be easily scaled up to the gram scale.
Collapse
Affiliation(s)
- Qiong Liu
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jia-Yuan Yong
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Tao Ban
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xu-Qin Li
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
7
|
Zhang M, Wu S, Wang L, Xia Z, Kuang K, Xu Q, Zhao F, Zhou N. Visible-Light-Induced Cascade Cyclization of N-Propargyl Aromatic Amines and Acyl Oxime Esters: Rapid Access to 3-Acylated Quinolines. J Org Chem 2022; 87:10277-10284. [DOI: 10.1021/acs.joc.2c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
- Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Sixin Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Lei Wang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Ziqin Xia
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Kaimo Kuang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Qiankun Xu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fangli Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
8
|
Guo MM, Song XD, Liu X, Zheng YW, Chu XQ, Rao W, Shen ZL. Iron(III)‐catalyzed difluoroalkylation of aryl alkynes with difluoroenol silyl ether in the presence of trimethylsilyl chloride. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Zhang Y, Luo M, Zhang Y, Cheng K, Li Y, Qi C, Shen R, Wang H. CuCl 2·2H 2O/TBHP mediated synthesis of β-enaminones via coupling reaction of vinyl azides with aldehydes. Org Biomol Chem 2022; 20:1952-1957. [PMID: 35170603 DOI: 10.1039/d1ob02479e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and efficient oxidative functionalization of vinyl azides with aldehydes furnishing a diverse array of β-acylated enaminones was developed. The cross coupling was accomplished in the presence of CuCl2·2H2O/TBHP and produced the desired β-acylated enaminones in a (Z)-stereo-selective and atom-economic manner, which make this protocol particularly attractive. In the transformation, the new C-C and C-N bonds were formed via a one-pot strategy including the process of radical addition and recombination.
Collapse
Affiliation(s)
- Yaohong Zhang
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| | - Mengqiang Luo
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China. .,School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China
| | - Yichan Zhang
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, P. R. China
| | - Kai Cheng
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| | - Yong Li
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| | - Chenze Qi
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| | - Runpu Shen
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China
| | - Hai Wang
- School of Chemistry and Chemical Engineering, School of Life Science, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, P. R. China.
| |
Collapse
|
10
|
|
11
|
He JQ, Yang ZX, Zhou XL, Li Y, Gao S, Shi L, Liang D. Exploring the regioselectivity of the cyanoalkylation of 3-aza-1,5-dienes: photoinduced synthesis of 3-cyanoalkyl-4-pyrrolin-2-ones. Org Chem Front 2022. [DOI: 10.1039/d2qo00918h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regioselective cyanoalkylalkenylation of 3-aza-1,5-dienes with oxime esters induced by visible light.
Collapse
Affiliation(s)
- Jia-Qin He
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Zhi-Xian Yang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Xue-Lu Zhou
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yanni Li
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Shulin Gao
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Lou Shi
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|
12
|
Wang CY, Yu JX, Liu B, Zhang F, Wang ZQ, Xu ZF, Hu QY, Li JH. Metal-/solvent-free oxidative [4+2]/[3+2] annulation of 2-ethynylbenzaldehydes with arylalkenes: Facile synthesis of benzo[a]fluoren-5-ones. Org Chem Front 2022. [DOI: 10.1039/d1qo01888d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here a DTBP-mediated oxidative [4+2]/[3+2] annulation between 2-alkynylbenzaldehydes and terminal arylalkenes enabled by aldehyde C(sp2)-H functionalization for assembling a range of benzo[a]fluoren-5-ones with high step-economy, simple operations under...
Collapse
|
13
|
Chvojka T, Markos A, Voltrová S, Pohl R, Beier P. Ligand-dependent stereoselective Suzuki-Miyaura cross-coupling reactions of β-enamido triflates. Beilstein J Org Chem 2021; 17:2657-2662. [PMID: 34795803 PMCID: PMC8561141 DOI: 10.3762/bjoc.17.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
The stereoselective Suzuki–Miyaura cross-coupling of (Z)-β-enamido triflates is demonstrated. Depending on the nature of the ligand in the palladium catalyst, either retention or inversion of the configuration during the synthesis of β,β-diaryl-substituted enamides is observed. Thus, the method provides synthetic access to both isomers of the target enamides from (Z)-β-enamido triflates.
Collapse
Affiliation(s)
- Tomáš Chvojka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Athanasios Markos
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, CZ-128 43 Prague 2, Czech Republic
| | - Svatava Voltrová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| |
Collapse
|
14
|
Gu Q, Wang X, Liu X, Wu G, Xie Y, Shao Y, Zhao Y, Zeng X. Electrochemical sulfonylation of enamides with sodium sulfinates to access β-amidovinyl sulfones. Org Biomol Chem 2021; 19:8295-8300. [PMID: 34519742 DOI: 10.1039/d1ob01485d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical sulfonylation of enamides with sodium sulfinates was developed in an undivided cell in constant current mode, leading to the formation of β-amidovinyl sulfones in moderate to good yields. The catalyst-, electrolyte- and oxidant-free protocol features good functional group tolerance and employs electric current as a green oxidant. Mechanistic insights into the reaction indicate that the reaction may proceed via a radical mechanism.
Collapse
Affiliation(s)
- Qingyun Gu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xin Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xinyi Liu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Guixia Wu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yushan Xie
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yu Shao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| |
Collapse
|
15
|
Access to multi-functionalized oxazolines via silver-catalyzed heteroannulation of enamides with sulfoxonium ylides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Gu Q, Wang Q, Dai W, Wang X, Ban Y, Liu T, Zhao Y, Zhang Y, Ling Y, Zeng X. K 2S 2O 8-mediated regio- and stereo-selective thiocyanation of enamides with NH 4SCN. Org Biomol Chem 2021; 19:2512-2516. [PMID: 33662088 DOI: 10.1039/d1ob00156f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A direct and straightforward thiocyanation of enamides with NH4SCN under metal-free conditions has been accomplished. A variety of (E)-β-thiocyanoenamides are readily produced in a regio- and stereo-selective manner. The protocol features mild reaction conditions, good functional group tolerance and operational simplicity. The potential utility of this strategy was further demonstrated by transformation of thiocyanate into thiotetrazole-containing compounds and a Pd-catalyzed cross-coupling reaction to afford six- or seven-membered sulfur-containing heterocycles. Mechanistic insights into the reaction indicate that the reaction may proceed via a radical mechanism.
Collapse
Affiliation(s)
- Qingyun Gu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li X, Sun K, Shen W, Zhang Y, Lu MZ, Luo X, Luo H. Rhodium(III)-Catalyzed Direct C-H Arylation of Various Acyclic Enamides with Arylsilanes. Org Lett 2021; 23:31-36. [PMID: 33337165 DOI: 10.1021/acs.orglett.0c03578] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The stereoselective β-C(sp2)-H arylation of various acyclic enamides with arylsilanes via Rh(III)-catalyzed cross-coupling reaction was illustrated. The methodology was characterized by extraordinary efficacy and stereoselectivity, a wide scope of substrates, good functional group tolerance, and the adoption of environmentally friendly arylsilanes. The utility of this present method was evidenced by the gram-scale synthesis and further elaboration of the product. In addition, Rh(III)-catalyzed C-H activation is considered to be the critical step in the reaction mechanism.
Collapse
Affiliation(s)
- Xiaolan Li
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Kai Sun
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Wenjuan Shen
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yong Zhang
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Ming-Zhu Lu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Xuzhong Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Haiqing Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
18
|
Zhu Y, Chen F, Cheng D, Chen Y, Zhao X, Wei W, Lu Y, Zhao J. Rhodium(III)-Catalyzed Alkenyl C-H Functionalization to Dienes and Allenes. Org Lett 2020; 22:8786-8790. [PMID: 33147030 DOI: 10.1021/acs.orglett.0c03126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An oxyacetamide-directed Rh(III)-catalyzed Z-type alkenyl C-H functionalization through a rare exo-rhodacyle intermediate is described, forming multisubstituted dienes and allenes. A variety of alkenes and propargylic carbonate coupling partners are suitable for this transformation with high regio- and stereoselectivity. The synthetic utility is demonstrated by the selective late-stage modification of the Z-type natural products as well as the synthesis of the unnatural β-amino acid.
Collapse
Affiliation(s)
- Yuelu Zhu
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Feng Chen
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Donghui Cheng
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ying Chen
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xinyang Zhao
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wei Wei
- School of Life Sciences, Nanjing University, Nanjing 210093, China.,Shenzhen Research Institute, Nanjing University, Shenzhen 518000, China
| | - Yi Lu
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.,Shenzhen Research Institute, Nanjing University, Shenzhen 518000, China
| |
Collapse
|
19
|
Li S, Shan QC, Hu LM, Ma XQ, Hu XH. Merging alkenyl C–H activation with the ring-opening of 1,2-oxazetidines: ruthenium-catalyzed aminomethylation of enamides. Chem Commun (Camb) 2020; 56:7969-7972. [DOI: 10.1039/d0cc03081c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1,2-Oxazetidines have been utilized as formaldimine precursors for the direct aminomethylation of enamides under a Ru(ii) species.
Collapse
Affiliation(s)
- Song Li
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Qi-Chao Shan
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Lu-Min Hu
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xue-Qing Ma
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xu-Hong Hu
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
20
|
Duan XF. Iron catalyzed stereoselective alkene synthesis: a sustainable pathway. Chem Commun (Camb) 2020; 56:14937-14961. [DOI: 10.1039/d0cc04882h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replacing expensive or toxic transition metals with iron has become an important trend. This article summarises the recent progresses of a wide range of Fe-catalyzed reactions for accessing various stereodefined alkenes.
Collapse
|