1
|
Maurya NK, Singh A, Sahu A, Kumar A, Kant R, Rao VG, Shukla SK, Kuram MR. Suzuki-Miyaura/Mizoroki-Heck coupling cascade to access 2,2'-bifunctionalized biaryls. Chem Commun (Camb) 2025; 61:1673-1676. [PMID: 39744986 DOI: 10.1039/d4cc05763e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Biaryl motifs are essential structural features in several drugs and functional molecules. Cyclic diaryliodonium has been scarcely explored as a bifunctional agent compared to ring opening and annulation reactions. Herein, a three-component cascade approach is developed to synthesize bifunctionalized biaryls employing cyclic diaryliodoniums as a biarylating agent. The mild conditions enabled a vast array of biarylated products in good yields in a single step. Furthermore, preliminary mechanistic details and photophysical properties have been investigated.
Collapse
Affiliation(s)
- Naveen Kumar Maurya
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anushka Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
| | - Ankita Sahu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| | - Asit Kumar
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Vishal Govind Rao
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| | - Sanjeev K Shukla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
| | - Malleswara Rao Kuram
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Schmidt TA, Hutskalova V, Sparr C. Atroposelective catalysis. Nat Rev Chem 2024; 8:497-517. [PMID: 38890539 DOI: 10.1038/s41570-024-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Atropisomeric compounds-stereoisomers that arise from the restricted rotation about a single bond-have attracted widespread attention in recent years due to their immense potential for applications in a variety of fields, including medicinal chemistry, catalysis and molecular nanoscience. This increased interest led to the invention of new molecular motors, the incorporation of atropisomers into drug discovery programmes and a wide range of novel atroposelective reactions, including those that simultaneously control multiple stereogenic axes. A diverse set of synthetic methodologies, which can be grouped into desymmetrizations, (dynamic) kinetic resolutions, cross-coupling reactions and de novo ring formations, is available for the catalyst-controlled stereoselective synthesis of various atropisomer classes. In this Review, we generalize the concepts for the catalyst-controlled stereoselective synthesis of atropisomers within these categories with an emphasis on recent advancements and underdeveloped atropisomeric scaffolds beyond stereogenic C(sp2)-C(sp2) axes. We also discuss more complex systems with multiple stereogenic axes or higher-order stereogenicity.
Collapse
Affiliation(s)
- Tanno A Schmidt
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Christof Sparr
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Wen W, Yang C, Wu Z, Xiao D, Guo Q. Bifunctional Squaramide-Catalyzed Oxidative Kinetic Resolution: Simultaneous Access to Axially Chiral Thioether and Sulfoxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402429. [PMID: 38751149 PMCID: PMC11267355 DOI: 10.1002/advs.202402429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Indexed: 07/25/2024]
Abstract
Axially chiral thioethers and sulfoxides emerge as two pivotal classes of ligands and organocatalysts, which have remarkable features in the stereoinduction of various asymmetric transformations. However, the lack of easy methods to access such molecules with diverse structures has hampered their broader utilization. Herein, an oxidative kinetic resolution for sulfides using a chiral bifunctional squaramide as the catalyst with cumene hydroperoxide as the terminal oxidant is established. This asymmetric approach provides a variety of axially chiral thioethers as well as sulfoxides bearing both axial and central chirality, with excellent diastereo- and enantioselectivities. This catalytic system also successfully extends to the kinetic resolution of benzothiophene-based sulfides. Preliminary mechanism investigation indicates that the multiple hydrogen bonding interactions between the bifunctional squaramide catalyst and substrates play a crucial role in determining the enantioselectivity and reactivity.
Collapse
Affiliation(s)
- Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing MunicipalityChongqing Key Laboratory of Soft‐Matter Material ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Chang‐Lin Yang
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Zhu‐Lian Wu
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Dong‐Rong Xiao
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Qi‐Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing MunicipalityChongqing Key Laboratory of Soft‐Matter Material ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| |
Collapse
|
4
|
Zhang Y, Wang Y, Wang L, Han J. Selective S-arylation of thiols with o-OTf-substituted diaryliodonium salts toward diarylsulfides. Org Biomol Chem 2024; 22:486-490. [PMID: 38111368 DOI: 10.1039/d3ob01922e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In contrast to the previously reported intramolecular aryl migration, we present the selective sulfenylation of ortho-trifluoromethanesulfonate (OTf) substituted diaryliodonium salts with thiols. As such, diarylsulfides bearing vicinal OTf groups were synthesized in good yields. The unique reactivity of the vicinal OTf group and the sulfur atom in arylsulfides offers further transformations.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yu Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
5
|
Wei L, Li J, Zhao Y, Zhou Q, Wei Z, Chen Y, Zhang X, Yang X. Chiral Phosphoric Acid Catalyzed Asymmetric Hydrolysis of Biaryl Oxazepines for the Synthesis of Axially Chiral Biaryl Amino Phenol Derivatives. Angew Chem Int Ed Engl 2023; 62:e202306864. [PMID: 37338333 DOI: 10.1002/anie.202306864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The development of catalytic asymmetric reaction with water as the reactant is challenging due to the reactivity- and stereoselectivity-control issues resulted from the low nucleophilicity and the small size of water. We disclose herein a chiral phosphoric acid (CPA) catalyzed atroposelective ring-opening reaction of biaryl oxazepines with water. A series of biaryl oxazepines undergo the CPA catalyzed asymmetric hydrolysis in a highly enantioselective manner. The key for the success of this reaction is the use of a new SPINOL-derived CPA catalyst and the high reactivity of biaryl oxazepine substrates towards water under acidic conditions. Density functional theory calculations suggest that the reaction proceeds via a dynamic kinetic resolution pathway and the CPA catalyzed addition of water to the imine group is both enantio- and rate-determining.
Collapse
Affiliation(s)
- Liwen Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jiaomeng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yi Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Qinglong Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Zhikang Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yuhang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Xinglong Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Singapore
| | - Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
6
|
Roos CB, Chiang CH, Murray LAM, Yang D, Schulert L, Narayan ARH. Stereodynamic Strategies to Induce and Enrich Chirality of Atropisomers at a Late Stage. Chem Rev 2023; 123:10641-10727. [PMID: 37639323 DOI: 10.1021/acs.chemrev.3c00327] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Enantiomers, where chirality arises from restricted rotation around a single bond, are atropisomers. Due to the unique nature of the origins of their chirality, synthetic strategies to access these compounds in an enantioselective manner differ from those used to prepare enantioenriched compounds containing point chirality arising from an unsymmetrically substituted carbon center. In particular stereodynamic transformations, such as dynamic kinetic resolutions, thermodynamic dynamic resolutions, and deracemizations, which rely on the ability to racemize or interconvert enantiomers, are a promising set of transformations to prepare optically pure compounds in the late stage of a synthetic sequence. Translation of these synthetic approaches from compounds with point chirality to atropisomers requires an expanded toolbox for epimerization/racemization and provides an opportunity to develop a new conceptual framework for the enantioselective synthesis of these compounds.
Collapse
|
7
|
Singhal R, Choudhary SP, Malik B, Pilania M. Cyclic diaryliodonium salts: applications and overview. Org Biomol Chem 2023; 21:4358-4378. [PMID: 37161758 DOI: 10.1039/d3ob00134b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibility, wide substrate scope, and functionalization tolerance, have made them appropriate starting materials for many bioactive compounds. Fluorenes, thiophenes, carbazoles, phenanthrenes, and many other useful cyclic bioactive molecules that are essential for pharmaceutical synthesis can be readily accessed from cyclic diaryliodonium salts. Particular focus has been given to the high optical activity and good enantiomeric excess of the products that facilitate the easy formation of many difficult-to-obtain optical isomers, such as atropisomers. This review aims to compile and summarize all the recent advances in synthesizing methodologies to prepare the important compounds where cyclic diaryliodonium salt is an integral part of the methodologies and would hopefully provide a good foundation for further research on this topic.
Collapse
Affiliation(s)
- Rakshanda Singhal
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Satya Prakash Choudhary
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Babita Malik
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Meenakshi Pilania
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| |
Collapse
|
8
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
9
|
Maurya NK, Yadav S, Chaudhary D, Kumar D, Ishu K, Kuram MR. Palladium-Catalyzed C(sp 3)-H Biarylation of 8-Methyl Quinolines with Cyclic Diaryliodonium Salts to Access Functionalized Biaryls and Fluorene Derivatives. J Org Chem 2022; 87:13744-13749. [PMID: 36198197 DOI: 10.1021/acs.joc.2c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we have developed the cyclic diaryliodonium salts as biarylating agents in the C(sp3)-H functionalization using 8-methyl quinoline as the intrinsic directing group. The oxidant-free reaction produces a vast array of the biarylated products with iodo functionality that can be further functionalized. Additionally, intramolecular C(sp3)-H functionalization in a stepwise manner under palladium-catalyzed conditions produced the fluorene derivatives in excellent yields.
Collapse
Affiliation(s)
- Naveen Kumar Maurya
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Yadav
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dhananjay Chaudhary
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dharmendra Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Km Ishu
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Malleswara Rao Kuram
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Zhang X, Zhao K, Gu Z. Transition Metal-Catalyzed Biaryl Atropisomer Synthesis via a Torsional Strain Promoted Ring-Opening Reaction. Acc Chem Res 2022; 55:1620-1633. [PMID: 35647705 DOI: 10.1021/acs.accounts.2c00175] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusArising from the restricted rotation of a single bond caused by steric or electronic effects, atropisomerism is one of the few fundamental categories for molecules to manifest their three-dimensional characters into which axially chiral biaryl compounds fall. Despite the widespread occurrence of axially chiral skeletons in natural products, bioactive molecules, and chiral ligands/organocatalysts, catalytic asymmetric methods for the synthesis of these structures still lag behind demand. Major challenges for the preparation of these chiral biaryls include accessing highly sterically hindered variants while controlling the stereoselectivity. A couple of useful strategies have emerged for the direct asymmetric synthesis of these molecules in the last two decades.Recently, we have engaged in catalytic asymmetric synthesis of biaryl atropisomers via transition metal catalysis, including asymmetric ring-openings of dibenzo cyclic compounds. During these studies, we serendipitously discovered that the two substituents adjacent to the axis cause these dibenzo cyclic molecules to be distorted to minimize steric repulsion. The distorted compounds display higher reactivity in the ring-opening reactions than the non-distorted molecules. In other words, torsional strain can promote a ring-opening reaction. On the basis of this concept, we have successfully realized the catalytic asymmetric ring-opening reaction of cyclic diaryliodoniums, dibenzo silanes, and 9H-fluoren-9-ols, which delivered several differently substituted ortho tetra-substituted biaryl atropisomers in high enantioselectivity. The torsional strain not only activates the substrates toward ring-opening under mild conditions but also changes the chemoselectivity of bond-breaking events. In the palladium-catalyzed carboxylation of S-aryl dibenzothiophenium, the torsional strain inversed the bond selectivity from exocyclic C-S bond cleavage to the ring-opening reaction.In this Account, we summarize our studies on copper-, rhodium-, or palladium-catalyzed asymmetric ring-opening reactions of dibenzo cyclic compounds as a useful collection of methods for the straightforward preparation of ortho tetra-substituted biaryl atropisomers with high enantiopurity on the basis of the above-mentioned torsional strain-promoted ring-opening coupling strategy. In the last part, the torsional strain energies are also discussed with the aid of density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xue Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Kun Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
11
|
Saikia RA, Hazarika N, Biswakarma N, Chandra Deka R, Thakur AJ. Metal-free S-arylation of 5-mercaptotetrazoles and 2-mercaptopyridine with unsymmetrical diaryliodonium salts. Org Biomol Chem 2022; 20:3890-3896. [PMID: 35481589 DOI: 10.1039/d2ob00406b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we demonstrate the application of unsymmetrical iodonium salts towards S-arylation of heterocyclic thiols (especially tetrazole-5-thiols and pyridine-2-thiol) under metal-free conditions, affording a diverse range of di(hetero)aryl thioethers in moderate to good yields. A detailed study on the effects of counter-anions and the auxiliary of iodonium salts was conducted. Suitable auxiliary selection of the unsymmetrical iodonium salt offers flexibility for a wide range of aryl moieties and its incorporation into S-arylation. The DFT study supports the experimental observations of chemoselective arylation.
Collapse
Affiliation(s)
- Raktim Abha Saikia
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India.
| | - Nitumoni Hazarika
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati-781039, India
| | - Nishant Biswakarma
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India.
| | - Ramesh Chandra Deka
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India.
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India.
| |
Collapse
|
12
|
Zhu D, Sun Y, Peng H, Li H, Yan Y, Kuang H. Enantioselective Synthesis of Axially Chiral Oxazole Biaryls via Cu‐Catalyzed Oxidation of Cyclic Diaryliodoniums. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daqian Zhu
- Guangdong Pharmaceutical University School of Pharmacy 280 Waihuan East Road 510006 Guangzhou CHINA
| | - Yameng Sun
- Sun Yat-sen University Cancer Center collaborative innovation center for cancer medicine CHINA
| | - Hui Peng
- Sun Yat-sen University Cancer Center collaborative innovation center for cancer medicine CHINA
| | - Hangni Li
- Guangdong Pharmaceutical University school of pharmacy CHINA
| | - Yang Yan
- Guangdong Pharmaceutical University school of pharmacy CHINA
| | - Haolin Kuang
- Guangdong Pharmaceutical University school of pharmacy CHINA
| |
Collapse
|
13
|
Wang G, Huang J, Zhang J, Fu Z. Catalytically atroposelective ring-opening of configurationally labile compounds to access axially chiral biaryls. Org Chem Front 2022. [DOI: 10.1039/d2qo00946c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this minireview, we evaluate and summarize the construction of axially chiral biaryls, and briefly state our personal perspectives on the future advancement of this direction.
Collapse
Affiliation(s)
- Guanjie Wang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jie Huang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhenqian Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
14
|
Liang H, Zhu G, Pu X, Qiu L. Copper-Catalyzed Enantioselective C-H Arylation between 2-Arylindoles and Hypervalent Iodine Reagents. Org Lett 2021; 23:9246-9250. [PMID: 34806895 DOI: 10.1021/acs.orglett.1c03596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The copper-catalyzed enantioselective C-H arylation between 2-arylindoles and hypervalent iodine reagents has been successfully developed, which provides a convenient and economical route to the highly atroposelective synthesis of axially chiral indole derivatives with a 2-aryl structure (up to 99% ee). Density functional theory calculations and wave function analysis show that the key "sandwich" intermediate leads to high enantioselectivity of the reaction.
Collapse
Affiliation(s)
- Hao Liang
- School of Chemistry, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guoxun Zhu
- Electronic/IT-related Chemicals Lab, Guangdong Institute of Analysis, Guangzhou 510070, China
| | - Xiaoyun Pu
- School of Chemistry, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-Sen University, Guangzhou 510006, China
| | - Liqin Qiu
- School of Chemistry, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
15
|
Antonkin NS, Vlasenko YA, Yoshimura A, Smirnov VI, Borodina TN, Zhdankin VV, Yusubov MS, Shafir A, Postnikov PS. Preparation and Synthetic Applicability of Imidazole-Containing Cyclic Iodonium Salts. J Org Chem 2021; 86:7163-7178. [PMID: 33944564 DOI: 10.1021/acs.joc.1c00483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel approach to the preparation of imidazole-substituted cyclic iodonium salts has been developed via the oxidative cyclization of 1-phenyl-5-iodoimidazole using a cheap and available Oxone/H2SO4 oxidative system. The structure of the new polycyclic heteroarenes has been confirmed by single-crystal X-ray diffractometry, revealing the characteristic structure features for cyclic iodonium salts. The newly produced imidazole-flanked cyclic iodonium compounds were found to readily engage in a heterocyclization reaction with elemental sulfur, affording benzo[5,1-b]imidazothiazoles in good yields.
Collapse
Affiliation(s)
- Nikita S Antonkin
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Yulia A Vlasenko
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Akira Yoshimura
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Vladimir I Smirnov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky Str., 1, Irkutsk 664033, Russian Federation
| | - Tatyana N Borodina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky Str., 1, Irkutsk 664033, Russian Federation
| | - Viktor V Zhdankin
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.,Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Mekhman S Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Alexandr Shafir
- Department of Biological Chemistry, IQAC-CSIC, c/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.,Department of Solid-State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| |
Collapse
|
16
|
Abstract
Developments in synthetic chemistry are increasingly driven by improvements in the selectivity and sustainability of transformations. Bifunctional reagents, either as dual coupling partners or as a coupling partner in combination with an activating species, offer an atom-economic approach to chemical complexity, while suppressing the formation of waste. These reagents are employed in organic synthesis thanks to their ability to form complex organic architectures and empower novel reaction pathways. This Review describes several key bifunctional reagents by showcasing selected cornerstone research areas and examples, including radical reactions, C-H functionalization, cross-coupling, organocatalysis and cyclization reactions.
Collapse
|
17
|
Chen Y, He R, Song H, Yu G, Li C, Liu Y, Wang Q. Two‐Step Protocol for Iodotrimethylsilane‐Mediated Deoxy‐Functionalization of Alcohols. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuming Chen
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
| | - Ru He
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
| | - Guoqing Yu
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
- Shandong Boyuan Pharmaceutical & Chemical Co., Ltd 262725 Shouguang People's Republic of China
| | - Chenglin Li
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
- Shandong Boyuan Pharmaceutical & Chemical Co., Ltd 262725 Shouguang People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University 300071 Tianjin People's Republic of China
| |
Collapse
|
18
|
Ke J, Zu B, Guo Y, Li Y, He C. Hexafluoroisopropanol-Enabled Copper-Catalyzed Asymmetric Halogenation of Cyclic Diaryliodoniums for the Synthesis of Axially Chiral 2,2'-Dihalobiaryls. Org Lett 2021; 23:329-333. [PMID: 33372799 DOI: 10.1021/acs.orglett.0c03833] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient asymmetric halogenation of cyclic diaryliodonium salts is demonstrated, which gives access to a wide range of axially chiral 2,2'-dihalobiaryls in good to excellent yields and with excellent enantioselectivities. The use of CuX with chiral bisoxazoline ligand and tetrabutylammonium halides in the unique solvent of hexafluoroisopropanol (HFIP) led to the best results in the process. The axially chiral 2,2'-dihalobiaryls can be transformed into a number of enantiopure chiral ligands that could be potentially useful in asymmetric catalysis.
Collapse
Affiliation(s)
- Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bing Zu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yonghong Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yingzi Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
19
|
Elsherbini M, Moran WJ. Scalable electrochemical synthesis of diaryliodonium salts. Org Biomol Chem 2021; 19:4706-4711. [PMID: 33960987 DOI: 10.1039/d1ob00457c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic and acyclic diaryliodonium are synthesised by anodic oxidation of iodobiaryls and iodoarene/arene mixtures, respectively, in a simple undivided electrolysis cell in MeCN-HFIP-TfOH without any added electrolyte salts. This atom efficient process does not require chemical oxidants and generates no chemical waste. More than 30 cyclic and acyclic diaryliodonium salts with different substitution patterns were prepared in very good to excellent yields. The reaction was scaled-up to 10 mmol scale giving more than four grams of dibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (>95%) in less than three hours. The solvent mixture of the large-scale experiment was recovered (>97%) and recycled several times without significant reduction in yield.
Collapse
Affiliation(s)
- Mohamed Elsherbini
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| | - Wesley J Moran
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| |
Collapse
|
20
|
Zhu K, Song Z, Wang Y, Zhang F. Synthesis of 2,2′-Dihalobiaryls via Cu-Catalyzed Halogenation of Cyclic Diaryliodonium Salts. Org Lett 2020; 22:9356-9359. [DOI: 10.1021/acs.orglett.0c03614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kai Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zongqiang Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
21
|
Ding M, Hua W, Liu M, Zhang F. Pd-Catalyzed C(sp 3)-H Biarylation via Transient Directing Group Strategy. Org Lett 2020; 22:7419-7423. [PMID: 32946696 DOI: 10.1021/acs.orglett.0c02353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we describe a highly selective Pd-catalyzed C(sp3)-H biarylation of 2-methylbenzaldehydes using cyclic diaryliodonium salts as arylation reagents. The key strategy is the employment of tert-leucine as a bidentate transient directing group for the proximity-driven metalation to achieve reactivity and selectivity in C-H activation. Various functionalized biaryls bearing both aldehyde and iodine functional groups were prepared successfully, which could be further transformed into a wide range of compounds with potential applications in pharmaceutical chemistry and materials science.
Collapse
Affiliation(s)
| | | | | | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|