1
|
Wei B, Gong Y, Xue M, Dong A, Zhang H, Liu B, Yuan X, Wang Z, Jiang Q, Liang X, Ban S. Rapid Synthesis of 3,7a-Diazacyclohepta[ jk]fluorenes via Cascade Michael Addition/Pictet-Spengler Reaction and Amidation Reaction. J Org Chem 2025. [PMID: 40397605 DOI: 10.1021/acs.joc.5c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
In this article, a convenient method has been developed for the rapid and expedient diastereoselective synthesis of highly functionalized 3,7a-diazacyclohepta[jk]fluorenes from simple starting materials via a cascade Michael addition/Pictet-Spengler reaction and amidation reaction. In addition, the whole process, losing only one molecule of water and alcohol, has a high atomic economy.
Collapse
Affiliation(s)
- Bei Wei
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Yanlong Gong
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Meng Xue
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Aining Dong
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Hongyu Zhang
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Bin Liu
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Xi Yuan
- China North Chemical Industries Group Co., Ltd., Beijing 100089, China
| | - Zunjin Wang
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Qin Jiang
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Xinjie Liang
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Shurong Ban
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
2
|
Wang J, Ren P, Gu G, Jiang Z, Xiang B, Tang S, Jia AQ. Synthesis of Azepinoindoles via Pd-Catalyzed C(sp 2)-H Imidoylative Cyclization Reactions. J Org Chem 2022; 87:9663-9674. [PMID: 35696658 DOI: 10.1021/acs.joc.2c00717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and convenient method for the construction of diverse free (N-H)-benzazepinoindoles by Pd-catalyzed C(sp2)-H imidoylative cyclization of 3-(2-isocyanobenzyl)-1H-indoles was developed. The reaction shows a wide substrate scope and can be scaled up, providing a practical route to valuable bioactive azepinoindoles.
Collapse
Affiliation(s)
- Jiang Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| | - Pinzhuo Ren
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| | - Gongping Gu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| | - Zongyou Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| | - Bolin Xiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| | - Shi Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China.,Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Ai-Qun Jia
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, One Health Institute, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Harry NA, Ujwaldev SM. Recent advances in [5+2] cycloadditions. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220510152025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The existence of a seven-membered cyclic core in several natural products and biomolecules vitalized the research on its synthesis. [5+2] cycloaddition has become a promising strategy for the construction of seven-membered ring systems by the formation of carbon-carbon bonds in a single step, with strong regioselectivity and stereoselectivity. This review mainly focuses on recent developments in the area of [5+2] cycloaddition since 2019. Total synthesis of natural products involving [5+2] cycloaddition as key step leading to heptacyclic core is also discussed. Synthesis of fused and bridged ring systems via the reactions involving inter and intramolecular [5+2] cycloadditions like oxidopyrylium-mediated [5+2] cycloadditions, [5+2] cycloadditions of vinyl cyclopropanes (VCPs), vinyl phenols, etc is explained in the review with the latest examples. This review provides a useful guide for researchers exploring this powerful strategy to create more elegant heptacycles in their future research.
Collapse
|
4
|
Ghouse S, Sreenivasulu C, Kishore DR, Satyanarayana G. Recent developments by zinc based reagents/catalysts promoted organic transformations. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Yang XX, Yan RJ, Ran GY, Chen C, Yue JF, Yan X, Ouyang Q, Du W, Chen YC. π-Lewis-Base-Catalyzed Asymmetric Vinylogous Umpolung Reactions of Cyclopentadienones and Tropone. Angew Chem Int Ed Engl 2021; 60:26762-26768. [PMID: 34617655 DOI: 10.1002/anie.202111708] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Indexed: 12/21/2022]
Abstract
We disclose that the carbonates of 4-hydroxy-2-cyclopentenones can form π-allylpalladium-based 1,2-carbodipoles, which isomerize to interesting η2 -Pd0 -cyclopentadienone complexes. Compared with the labile parent cyclopentadienone, the HOMO energy of the related η2 -complex was significantly raised via the back-bonding of Pd0 as a π-Lewis base, rendering the uncoordinated C=C bond an electron-richer dienophile in inverse-electron-demand aza-Diels-Alder-type reactions with diverse 1-azadienes. The vinylogous (aza)Morita-Baylis-Hillman or cross Rauhut-Currier addition to (imine)carbonyls or activated alkenes, respectively, was also realized to afford chiral [4+2] or [2+2] cycloadducts, respectively, after trapping the re-generated π-allylpalladium species. New C1 -symmetric ligands from simple chiral sources were developed, exhibiting high stereoselectivity even with racemic substrates via an unusual dynamic kinetic resolution process. Besides, tropone could be similarly activated by a Pd0 complex.
Collapse
Affiliation(s)
- Xing-Xing Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ru-Jie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Guang-Yao Ran
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chen Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jing-Fei Yue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiao Yan
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.,College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
6
|
Yang X, Yan R, Ran G, Chen C, Yue J, Yan X, Ouyang Q, Du W, Chen Y. π‐Lewis‐Base‐Catalyzed Asymmetric Vinylogous Umpolung Reactions of Cyclopentadienones and Tropone. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xing‐Xing Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Ru‐Jie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Guang‐Yao Ran
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Chen Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Jing‐Fei Yue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Xiao Yan
- College of Pharmacy Third Military Medical University Chongqing 400038 China
| | - Qin Ouyang
- College of Pharmacy Third Military Medical University Chongqing 400038 China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Ying‐Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
- College of Pharmacy Third Military Medical University Chongqing 400038 China
| |
Collapse
|
7
|
Loui HJ, Suneja A, Schneider C. Cooperative Rh/Chiral Phosphoric Acid Catalysis toward the Highly Stereoselective (3 + 3)-Cycloannulation of Carbonyl Ylides and Indolyl-2-methides. Org Lett 2021; 23:2578-2583. [DOI: 10.1021/acs.orglett.1c00489] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Henning J. Loui
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Arun Suneja
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Christoph Schneider
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Kaur M, Garg S, Malhi DS, Sohal HS. A Review on Synthesis, Reactions and Biological Properties of Seven Membered Heterocyclic Compounds: Azepine, Azepane, Azepinone. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825999210104222338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Seven membered heterocyclic Azepine and its derivatives have great pharmacological
and therapeutic implications. In this review, the literature of the last fifty years has
been exploited for the synthesis, reaction, and biological properties of these seven-member
heterocyclic compounds. Most of the mechanisms involved the ring expansion of either five
or six-membered compounds using various methods such as thermally, photo-chemically, and
microwave irradiation. The systematically designed schemes involve the synthesis of different
derivatives of azepine, azepinone, azepane, etc., using similar moieties by various researchers.
However, there is much work yet to be done in the biological section, as it is not
explored and reported in the literature; therefore, N-containing seven-membered heterocycles
still have much scope for the researchers.
Collapse
Affiliation(s)
- Manvinder Kaur
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Sonali Garg
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Dharambeer S. Malhi
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Harvinder S. Sohal
- Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| |
Collapse
|
9
|
Chen X, Yang N, Zeng W, Wang L, Li P, Li H. Metal-free dearomative [5+2]/[2+2] cycloaddition of 1 H-indoles with ortho-(trimethylsilyl)aryl triflates. Chem Commun (Camb) 2021; 57:7047-7050. [PMID: 34179907 DOI: 10.1039/d1cc02550c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein, we report a mild dearomative [5+2]/[2+2] cycloaddition of 1H-indoles with ortho-(trimethylsilyl)aryl triflates. The unique [5+2] cycloaddition enables the synthesis of a series of dibenzo[b,e]azepine derivatives in moderate to good yields. Increasing the steric hindrance at the C2-position of 1H-indoles leads to the [2+2] cycloaddition. Mechanistic investigations support that the reaction of 1H-indoles with arynes undergoes a [2+2] cycloaddition step, followed by a ring expansion to the [5+2] cycloaddition product.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Na Yang
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Wen Zeng
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Lei Wang
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China. and Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, P. R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Hongji Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Ahn HI, Park JU, Xuan Z, Kim JH. Pd-Catalyzed asymmetric [5 + 2] cycloaddition of vinylethylene carbonates and cyclic imines: access to N-fused 1,3-oxazepines. Org Biomol Chem 2020; 18:9826-9830. [DOI: 10.1039/d0ob02159h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile route to access enantioenriched N-fused 1,3-oxazepines via Pd-catalyzed asymmetric [5 + 2] cycloaddition of vinylethylene carbonates and cyclic imines has been developed.
Collapse
Affiliation(s)
- Hye-In Ahn
- Department of Chemistry (BK21)
- Research Institute of Natural Science
- Gyeongsang National University
- 52828, Jinju
- Korea
| | - Jong-Un Park
- Department of Chemistry (BK21)
- Research Institute of Natural Science
- Gyeongsang National University
- 52828, Jinju
- Korea
| | - Zi Xuan
- Department of Chemistry (BK21)
- Research Institute of Natural Science
- Gyeongsang National University
- 52828, Jinju
- Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK21)
- Research Institute of Natural Science
- Gyeongsang National University
- 52828, Jinju
- Korea
| |
Collapse
|