1
|
Zhang GD, Yang ZW, Yin FZ, Yan ZY, Xiong ZJ, Ma S, Guo ZK, Jiao RH. LC-MS Guided Discovery and Biosynthetic Pathway of Coprisamides E-H, Cinnamic Acid-Containing Metabolites from the Marine Algae-Derived Streptomyces thermolineatus NAK03196. JOURNAL OF NATURAL PRODUCTS 2025; 88:862-870. [PMID: 40030089 DOI: 10.1021/acs.jnatprod.4c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Four cinnamoyl-containing nonribosomal peptides (CCNPs), coprisamides E-H (1-4), were isolated from the marine algae-associated actinomycete strain Streptomyces thermolineatus NAK03196. Their structures were elucidated to be unreported coprisamides by comprehensive analyses of HRESIMS, 1D and 2D NMR spectroscopic data, Marfey's method, and MS/MS analysis. Coprisamides E (1) and F (2) bear a characteristic nonproteinogenic amino acid, 2,3-diaminopropanoic acid. The biosynthetic pathways for these isolates were proposed through a comparison of their biosynthetic gene clusters with reported homologous gene clusters. Coprisamide E (1) exhibited weak antibacterial activity against the Gram-positive strain Staphylococcus aureus.
Collapse
Affiliation(s)
- Guo Dong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zhi Wei Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Fang Zhou Yin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zhang Yuan Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zi Jun Xiong
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, People's Republic of China
| | - Shuai Ma
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, People's Republic of China
| | - Zhi Kai Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, People's Republic of China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
2
|
Chen M, Huang Y, Ma L, Liu JJ, Cao Y, Zhao PJ, Mo MH. Cis-3-Indoleacrylic Acid: A Nematicidal Compound from Streptomyces youssoufiensis YMF3.862 as V-ATPase Inhibitor on Meloidogyne incognita. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24347-24358. [PMID: 39453611 DOI: 10.1021/acs.jafc.4c07434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The application of the bionematicides derived from microorganisms and their secondary metabolites represents a promising strategy for managing root-knot nematodes. In this study, a nematicidal compound, cis-3-indoleacrylic acid, was isolated from Streptomyces youssoufiensis YMF3.862. This compound caused Meloidogyne incognita juveniles to have swollen bodies with apparent cracks on the cuticle surface. The LC50 value of cis-3-indoleacrylic acid against juveniles was 16.31 μg/mL 24 h of post-treatment. Cis-3-indoleacrylic acid at 20 μg/mL significantly inhibited V-ATPase expression and remarkably decreased enzyme activity by 84.41%. As an inhibitor of V-ATPase, cis-3-indoleacrylic acid caused significant H+ accumulation in nematode bodies, resulting in lower intracellular pH values and higher extracellular pH values of M. incognita. Application of 50 μg/mL cis-3-indoleacrylic acid generated a 71.06% control efficiency against M. incognita on tomatoes. The combination results of this study indicated that cis-3-indoleacrylic acid can be developed as a natural nematicide for controlling M. incognita.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| | - Ying Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| | - Li Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| | - Jian-Jin Liu
- Puer Corporation of Yunnan Tobacco Corporation, Puer 665000, P. R. China
| | - Yi Cao
- Guizhou Academy of Tobacco Agricultural Sciences, Guiyang 550081, P. R. China
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
3
|
Zou Y, Shi J, Sun JL, Li LY, Yan ZY, Guo ZK, Jiao RH. Maduraflavacins A-E, Unusual Phenyl Polyene Metabolites Produced by a Rare Marine-Derived Actinomadura sp. JOURNAL OF NATURAL PRODUCTS 2024; 87:2530-2536. [PMID: 39318040 DOI: 10.1021/acs.jnatprod.4c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Phenyl polyenes comprise a small family of bacterial natural products with broad and potent bioactivities, primarily found in actinobacteria. Here we report the discovery of five new phenyl polyene metabolites, maduraflavacins A-E (1-5), from a rare, marine-derived actinobacteria strain Actinomadura glauciflava NA03286. The structures of these natural products were determined by NMR spectroscopy, HRESIMS, LC-MS/MS, and chemical derivatization. All of these new maduraflavacins feature methyl substitutions at the polyene side chain, and maduraflavacins A-C (1-3) possessed a 1-N-β-d-glucosamine-(3 → 1)-O-β-d-glucopyranosyl-(3 → 1)-O-β-d-glucopyranosyl-(6 → 1)-O-β-d-glucopyranoside tetrasaccharide moiety via an amido linkage with a phenyl polyene skeleton. Compounds 1 and 2 showed weak antibacterial activities against the Gram-positive bacteria Staphylococcus aureus Sau 16339 and Micrococcus luteus, respectively.
Collapse
Affiliation(s)
- Yan Zou
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jia Lin Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ling Yu Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhang Yuan Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhi Kai Guo
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Liu X, Li Y, Li J, Ren J, Li D, Zhang S, Wu Y, Li J, Tan H, Zhang J. Cinnamoyl lipids as novel signaling molecules modulate the physiological metabolism of cross-phylum microorganisms. Commun Biol 2024; 7:1231. [PMID: 39354171 PMCID: PMC11445547 DOI: 10.1038/s42003-024-06950-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Signaling systems of microorganisms are responsible for regulating the physiological and metabolic processes and also play vital roles in the communications of cells. Identifying signaling molecules mediating the cross-talks is challenging yet highly desirable for comprehending the microbial interactions. Here, we demonstrate that a pathogenic Gram-negative Chromobacterium violaceum exerts significant influence on the morphological differentiation and secondary metabolism of Gram-positive Streptomyces. The physiological metabolisms are directly modulated by three novel cinnamoyl lipids (CVCL1, 2, and 3) from C. violaceum CV12472, whose biosynthesis is under the control of N-acylhomoserine lactone signaling system. Furthermore, a receptor of CVCLs in Streptomyces ansochromogenes 7100 is determined to be SabR1, the cognate receptor of γ-butenolide signaling molecules. This study reveals an unprecedented mode of microbial interactions, and the quorum sensing signaling systems in these two groups of bacteria can be bridged via CVCLs, suggesting that CVCLs can modulate the physiological metabolism of cross-phylum microorganisms.
Collapse
Affiliation(s)
- Xiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junyue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shijia Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jine Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Deng Z, Liu C, Wang F, Song N, Liu J, Li H, Liu S, Li T, Liu Z, Xiao F, Li W. A Versatile Thioesterase Involved in Dimerization during Cinnamoyl Lipid Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202402010. [PMID: 38462490 DOI: 10.1002/anie.202402010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
The cinnamoyl lipid compound youssoufene A1 (1), featuring a unique dearomatic carbon-bridged dimeric skeleton, exhibits increased inhibition against multidrug resistant Enterococcus faecalis as compared to monomeric youssoufenes. However, the formation process of this intriguing dearomatization/dimerization remains unknown. In this study, an unusual "gene-within-gene" thioesterase (TE) gene ysfF was functionally characterized. The gene was found to naturally encodes two proteins, an entire YsfF with α/β-hydrolase and 4-hydroxybenzoyl-CoA thioesterase (4-HBT)-like enzyme domains, and a nested YsfFHBT (4-HBT-like enzyme). Using an intracellular tagged carrier-protein tracking (ITCT) strategy, in vitro reconstitution and in vivo experiments, we found that: i) both domains of YsfF displayed thioesterase activities; ii) YsfF/YsfFHBT could accomplish the 6π-electrocyclic ring closure for benzene ring formation; and iii) YsfF and cyclase YsfX together were responsible for the ACP-tethered dearomatization/dimerization process, possibly through an unprecedented Michael-type addition reaction. Moreover, site-directed mutagenesis experiments demonstrated that N301, E483 and H566 of YsfF are critical residues for both the 6π-electrocyclization and dimerization processes. This study enhances our understanding of the multifunctionality of the TE protein family.
Collapse
Affiliation(s)
- Zirong Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi, 712100, China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Chunni Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Fang Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Ni Song
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Jing Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Siyu Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Tong Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Zengzhi Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Fei Xiao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Wenli Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi, 712100, China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| |
Collapse
|
6
|
Salama S, Mostafa HS, Husseiny S, Sebak M. Actinobacteria as Microbial Cell Factories and Biocatalysts in The Synthesis of Chiral Intermediates and Bioactive Molecules; Insights and Applications. Chem Biodivers 2024; 21:e202301205. [PMID: 38155095 DOI: 10.1002/cbdv.202301205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Actinobacteria are one of the most intriguing bacterial phyla in terms of chemical diversity and bioactivities of their reported biomolecules and natural products, including various types of chiral molecules. Actinobacterial genera such as Detzia, Mycobacterium, and Streptomyces are among the microbial sources targeted for selective reactions such as asymmetric biocatalysis catalyzed by whole cells or enzymes induced in their cell niche. Remarkably, stereoselective reactions catalyzed by actinobacterial whole cells or their enzymes include stereoselective oxidation, stereoselective reduction, kinetic resolution, asymmetric hydrolysis, and selective transamination, among others. Species of actinobacteria function with high chemo-, regio-, and enantio-selectivity under benign conditions, which could help current industrial processing. Numerous selective enzymes were either isolated from actinobacteria or expressed from actinobacteria in other microbes and hence exploited in the production of pure organic compounds difficult to obtain chemically. In addition, different species of actinobacteria, especially Streptomyces species, function as natural producers of chiral molecules of therapeutic importance. Herein, we discuss some of the most outstanding contributions of actinobacteria to asymmetric biocatalysis, which are important in the organic and/or pharmaceutical industries. In addition, we highlight the role of actinobacteria as microbial cell factories for chiral natural products with insights into their various biological potentialities.
Collapse
Affiliation(s)
- Sara Salama
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| | - Heba Sayed Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Samah Husseiny
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62517, Beni-Suef, Egypt
| | - Mohamed Sebak
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| |
Collapse
|
7
|
Kong J, Huang C, Xiong Y, Li B, Kong W, Liu W, Tan Z, Peng D, Duan Y, Zhu X. Discovery and Biosynthetic Studies of a Highly Reduced Cinnamoyl Lipid, Tripmycin A, from an Endophytic Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2023; 86:1870-1877. [PMID: 37462318 DOI: 10.1021/acs.jnatprod.3c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A Tripterygium wilfordii endophyte, Streptomyces sp. CB04723, was shown to produce an unusually highly reduced cytotoxic cinnamoyl lipid, tripmycin A (1). Structure-activity relationship studies revealed that both the cinnamyl moiety and the saturated fatty acid side chain are indispensable to the over 400-fold cytotoxicity improvement of 1 against the triple-negative breast cancer cell line MDA-MB-231 compared to 5-(2-methylphenyl)-4-pentenoic acid (2). Bioinformatical analysis, gene inactivation, and overexpression revealed that Hxs15 most likely acted as an enoyl reductase and was involved with the side chain reduction of 1, which provides a new insight into the biosynthesis of cinnamoyl lipids.
Collapse
Affiliation(s)
- Jieqian Kong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Chengshuang Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Yi Xiong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Baihuan Li
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Wenping Kong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Wangyang Liu
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan 410605, People's Republic of China
| | - Zhouke Tan
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan 410605, People's Republic of China
| | - Dian Peng
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan 410605, People's Republic of China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, People's Republic of China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
8
|
Ul Karim MR, Fukaya K, In Y, Sharma AR, Harunari E, Oku N, Urabe D, Trianto A, Igarashi Y. Marinoquinolones and Marinobactoic Acid: Antimicrobial and Cytotoxic ortho-Dialkylbenzene-Class Metabolites Produced by a Marine Obligate Gammaproteobacterium of the Genus Marinobacterium. JOURNAL OF NATURAL PRODUCTS 2022; 85:1763-1770. [PMID: 35802519 DOI: 10.1021/acs.jnatprod.2c00281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemical investigation of the culture extract of a marine obligate proteobacterium, Marinobacterium sp. C17-8, isolated from scleractinian coral Euphyllia sp., led to the discovery of three new o-dialkylbenzene-class metabolites, designated marinoquinolones A (1) and B (2) and marinobactoic acid (3). Spectroscopic analysis using MS and NMR revealed the structures of 1 and 2 to be 4-quinolones with an o-dialkylbenzene-containing side chain at C3 and 3 to be a fatty acid bearing an o-dialkylbenzene substructure. The 4-quinolone form of 1 and 2 was unequivocally determined by comparison of the 1H, 13C, and 15N chemical shifts of 1 with those predicted for 2-methyl-4-quinolone A and its tautomer 2-methyl-4-quinolinol B by quantum chemical calculation. Compound 1 was proven to be racemic by X-ray crystallographic analysis and chiral-phase HPLC analysis of its chemical degradation product. Compounds 1-3 exhibited antimicrobial activity against bacteria and filamentous fungi at MIC of 6.3-50 μg/mL. In addition, all compounds showed cytotoxicity against P388 murine leukemia cells at micromolar ranges.
Collapse
Affiliation(s)
- Md Rokon Ul Karim
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Keisuke Fukaya
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Yasuko In
- Department of Physical Chemistry, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-1041, Japan
| | - Amit Raj Sharma
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Enjuro Harunari
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Naoya Oku
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Daisuke Urabe
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Agus Trianto
- Faculty of Fisheries and Marine Sciences, Diponegoro University, Tembalang Campus, St. Prof. Soedarto, SH Semarang 50275, Central Java, Indonesia
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
9
|
Youssoufenes A2 and A3, Antibiotic Dimeric Cinnamoyl Lipids from the Δ dtlA Mutant of a Marine-Derived Streptomyces Strain. Mar Drugs 2022; 20:md20060394. [PMID: 35736197 PMCID: PMC9230751 DOI: 10.3390/md20060394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Two new dimeric cinnamoyl lipids (CL) featuring with an unusual dearomatic carbon-bridge, named youssoufenes A2 (1) and A3 (2), were isolated from the ΔdtlA mutant strain of marine-derived Streptomyces youssoufiensis OUC6819. Structures of the isolated compounds were elucidated based on extensive MS and NMR spectroscopic analyses, and their absolute configurations were determined by combination of the long-range NOE-based 1H-1H distance measurements and ECD calculations. Compounds 1 and 2 exhibited moderate growth inhibition against multi-drug-resistant Enterococcus faecalis CCARM 5172 with an MIC value of 22.2 μM.
Collapse
|
10
|
Shi J, Shi Y, Li JC, Wei W, Chen Y, Cheng P, Liu CL, Zhang H, Wu R, Zhang B, Jiao RH, Yu S, Liang Y, Tan RX, Ge HM. In Vitro Reconstitution of Cinnamoyl Moiety Reveals Two Distinct Cyclases for Benzene Ring Formation. J Am Chem Soc 2022; 144:7939-7948. [PMID: 35470672 DOI: 10.1021/jacs.2c02855] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cinnamoyl-containing natural products (CCNPs) are a small class of bacterial metabolites with notable bioactivities. The biosynthesis of cinnamoyl moiety has been proposed to be assembled by an unusual highly reducing (HR) type II polyketide synthases (PKS). However, the biosynthetic route, especially the cyclization step for the benzene ring formation, remains unclear. In this work, we successfully reconstituted the pathway of cinnamoyl moiety in kitacinnamycin biosynthesis through a step-wise approach in vitro and demonstrated that a three-protein complex, Kcn17-Kcn18-Kcn19, can catalyze 6π-electrocyclization followed by dehydrogenation to form the benzene ring. We found that the three-protein homologues were widely distributed among 207 HR type II PKS biosynthetic gene clusters including five known CCNPs. In contrast, in the biosynthesis of youssoufene, a cinnamoyl-containing polyene, we identified that the benzene ring formation was accomplished by a distinct orphan protein. Thus, our work resolved the long-standing mystery in cinnamoyl biosynthesis and revealed two distinct enzymes that can synthesize benzene rings via polyene precursors.
Collapse
Affiliation(s)
- Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jian Cheng Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wanqing Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ping Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Cheng Li Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yong Liang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Abstract
Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
12
|
Zhang J, Yuzawa S, Thong WL, Shinada T, Nishiyama M, Kuzuyama T. Reconstitution of a Highly Reducing Type II PKS System Reveals 6π-Electrocyclization Is Required for o-Dialkylbenzene Biosynthesis. J Am Chem Soc 2021; 143:2962-2969. [PMID: 33576619 DOI: 10.1021/jacs.0c13378] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Natural products containing an o-dialkylbenzene moiety exhibit a wide variety of bioactivities, including antibacterial, antifungal, antitumor, and antiangiogenic activities. However, the biosynthetic scheme of the o-dialkylbenzene moiety remains unclear. In this study, we identified the biosynthetic gene cluster (BGC) of compounds 1 and 2 in Streptomyces sp. SANK 60404, which contains a rare o-dialkylbenzene moiety, and successfully reconstituted the biosynthesis of 1 using 22 recombinant enzymes in vitro. Our study established a biosynthetic route for the o-tolyl group within the o-dialkylbenzene moiety, where the triene intermediate 3 loaded onto a unique acyl carrier protein (ACP) is elongated by a specific ketosynthase-chain length factor pair of a type II polyketide synthase system with the aid of a putative isomerase to be termed "electrocyclase" and a thioesterase-like enzyme in the BGC. The C2-elongated all-trans diketo-triene intermediate is subsequently isomerized to the 6Z configuration by the electrocyclase to allow intramolecular 6π-electrocyclization, followed by coenzyme FAD/FMN-dependent dehydrogenation. Bioinformatics analysis showed that the key genes are all conserved in BGCs of natural products containing an o-dialkylbenzene moiety, suggesting that the proposed biosynthetic scheme is a common strategy to form o-dialkylbenzenes in nature.
Collapse
Affiliation(s)
- Jie Zhang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Yuzawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Wei Li Thong
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
13
|
Deng Z, Liu J, Li T, Li H, Liu Z, Dong Y, Li W. An Unusual Type II Polyketide Synthase System Involved in Cinnamoyl Lipid Biosynthesis. Angew Chem Int Ed Engl 2020; 60:153-158. [PMID: 32860295 DOI: 10.1002/anie.202007777] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/13/2020] [Indexed: 12/13/2022]
Abstract
As a unique structural moiety in natural products, cinnamoyl lipids (CLs), are proposed to be assembled by unusual type II polyketide synthases (PKSs). Herein, we demonstrate that the assembly of the CL compounds youssoufenes is accomplished by a PKS system that uniquely harbors three phylogenetically different ketosynthase/chain length factor (KS/CLF) complexes (YsfB/C, YsfD/E, and YsfJ/K). Through in vivo gene inactivation and in vitro reconstitution, as well as an intracellular tagged carrier-protein tracking (ITCT) strategy developed in this study, we successfully elucidated the isomerase-dependent ACP-tethered polyunsaturated chain elongation process. The three KS/CLFs were revealed to modularly assemble different parts of the youssoufene skeleton, during which benzene ring closure happens right after the formation of an ACP-tethered C18 polyene. Of note, the ITCT strategy could significantly contribute to the elucidation of other carrier-protein-dependent biosynthetic machineries.
Collapse
Affiliation(s)
- Zirong Deng
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Jing Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Tong Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zengzhi Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yujing Dong
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
14
|
Deng Z, Liu J, Li T, Li H, Liu Z, Dong Y, Li W. An Unusual Type II Polyketide Synthase System Involved in Cinnamoyl Lipid Biosynthesis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Zirong Deng
- Key Laboratory of Marine Drugs Ministry of Education School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
| | - Jing Liu
- Key Laboratory of Marine Drugs Ministry of Education School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
| | - Tong Li
- Key Laboratory of Marine Drugs Ministry of Education School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
| | - Huayue Li
- Key Laboratory of Marine Drugs Ministry of Education School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Zengzhi Liu
- Key Laboratory of Marine Drugs Ministry of Education School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
| | - Yujing Dong
- Key Laboratory of Marine Drugs Ministry of Education School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
| | - Wenli Li
- Key Laboratory of Marine Drugs Ministry of Education School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| |
Collapse
|
15
|
Hou L, Liu Z, Yu D, Li H, Ju J, Li W. Targeted isolation of new polycyclic tetramate macrolactams from the deepsea-derived Streptomyces somaliensis SCSIO ZH66. Bioorg Chem 2020; 101:103954. [PMID: 32506015 DOI: 10.1016/j.bioorg.2020.103954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/31/2022]
Abstract
With a combined strategy of bioinformatics analysis, gene manipulation coupled with variation of growth conditions, the targeted activation of polycyclic tetramate macrolactams (PTMs) in the deepsea-derived Streptomyces somaliensis SCSIO ZH66 was conducted, which afforded a new (1) PTM, named somamycin A, along with three enol-type tetramic acid tautomers (2-4, somamycins B-D) of 10-epi-hydroxymaltophilin, 10-epi-maltophilin and 10-epi-HSAF, respectively. The structures of compounds 1-4 were elucidated by extensive spectroscopic analyses together with ECD calculations. Compound 1 exhibited notable growth inhibition against plant pathogenic fungi Fusariumoxysporum MHKW and Alternariabrassicae BCHB with the MIC values of 1.6 and 3.1 μg/mL, respectively, which were more potent than those of the positive control nystatin; and compounds 3 and 4 displayed moderate antifungal activities. Moreover, compounds 1-4 exhibited moderate cytotoxicity against the human cancer cell lines of HCT116 and K562.
Collapse
Affiliation(s)
- Lukuan Hou
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zengzhi Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Dongqi Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jianhua Ju
- CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
16
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2020. [DOI: 10.1039/d0np90014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as flavipeside A from Aspergillus flavipes.
Collapse
|