1
|
Yang G, Yang L, Liu Z, Song Y, Qu Y, Dong S, Feng X. Construction of Chiral Spiro-Bridged Rings with Four Consecutive Stereocenters via Dearomative Diels-Alder Reactions of Anthracenes. Org Lett 2025. [PMID: 40366298 DOI: 10.1021/acs.orglett.5c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
A highly diastereo- and enantioselective dearomative Diels-Alder reaction was accomplished by chiral N,N'-dioxide/Mg(II) complex catalyst. Various anthracene derivatives and methyleneindolinones efficiently transformed into the corresponding chiral spiro-bridged cyclic products with four consecutive stereocenters in good yields, excellent dr and er values under mild conditions (46 examples, up to 99% yield, >19:1 dr, >99:1 er). Gram-scale synthesis of chiral products and their further transformations were feasible. On the basis of theoretical calculation, possible working modes were provided to understand the origin of stereoselectivity of this transformation.
Collapse
Affiliation(s)
- Gaofei Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Longqing Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhenzhong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yilun Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yinhe Qu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Qu Y, Liu Z, Zhou Y, Feng X, Liu X. Asymmetric Catalytic Aziridination to Synthesize Spiro-aziridine Oxindoles. Chemistry 2025; 31:e202500302. [PMID: 39979234 DOI: 10.1002/chem.202500302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Asymmetric catalytic aza-Michael-initiated ring closure of methyleneindolinones with N-tosyloxycarbamates has been established. The reaction using a chiral nickel complex catalyst enabled the formation of a series of spiro-aziridine oxindoles in good yields (up to 99 %) with high stereoselectivity (up to 97 % ee, >19 : 1 dr) under mild reaction conditions. Ring-opening of spiro-aziridine oxindole leads to formation of glycinate-bearing oxindoles with retention of configuration.
Collapse
Affiliation(s)
- Yinhe Qu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Zhenzhong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| |
Collapse
|
3
|
Luo Q, Zhou Y, Zhang J, Dong S, Feng X. Asymmetric Catalytic (3 + 2) Cyclization and Sequential Reaction to Construct Dihydrofuran- and Azepine-Based Spirooxindoles. Org Lett 2025; 27:2133-2138. [PMID: 39985477 DOI: 10.1021/acs.orglett.5c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
The enantioselective formal (3 + 2) cyclization and sequential reaction of 2-malononitrile-substituted oxindoles with benzaldehydes and ortho-aminobenzaldehydes were achieved by chiral N,N'-dioxide/metal complex Lewis acid catalysts. This protocol supplies facile and efficient access to highly functionalized chiral dihydrofuran- and azepine-based spirooxindoles. Based on the control experiments and the deuterium labeling studies, the interconversion of (3 + 2) diastereomeric intermediates under the reaction conditions and reversible 1,5-H transfer step were disclosed.
Collapse
Affiliation(s)
- Qiliang Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jing Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Esteban A, Ortega P, Sanz F, Jambrina PG, Díez D. Crystallization-induced diastereomer transformation assists the diastereoselective synthesis of 4-nitroisoxazolidine scaffolds. Org Biomol Chem 2024; 22:6582-6592. [PMID: 39083363 DOI: 10.1039/d4ob01014k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
This communication describes a solution to the vexing problem of synthesis of 4-nitroisoxazolidine rings from cyclic nitrones and β-nitrostyrenes. The trans-endo adduct 2 is quantitatively synthesised from E-β-nitrostyrene under mild conditions avoiding purification, while the trans-exo adduct 4 is obtained at higher temperatures. Furthermore, a Crystallization-Induced Diastereomer Transformation (CIDT) process was used to epimerise the NO2 bond from 2 to the cis-exo adduct 3 with total conversion assisted by the para-halogen substitution of the aromatic ring without any additives. By combining these approaches, we can establish a simple synthetic methodology that allows the diastereoselective synthesis of three diastereoisomers, overcoming the previous problems described in the literature.
Collapse
Affiliation(s)
- Alberto Esteban
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca. Plaza de los Caídos 1-5, 37008 Salamanca, Spain.
| | - Pablo Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca. Plaza de los Caídos 1-5, 37008 Salamanca, Spain
| | - Francisca Sanz
- Servicio de Difracción de Rayos X, Plataforma Nucleus, Universidad de Salamanca, Plaza de los Caídos 1-5, 37008 Salamanca, Spain
| | - Pablo G Jambrina
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca. Plaza de los Caídos 1-5, 37008 Salamanca, Spain
| | - David Díez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca. Plaza de los Caídos 1-5, 37008 Salamanca, Spain.
| |
Collapse
|
5
|
Yu X, Ji X, Shang D, Yu L, Chan PWH, Rao W. Rhodium(I)-Catalyzed Cascade Annulation of 1, n-Diynyl Nitrones to 3,4-Fused Fully Substituted Furans. Org Lett 2024; 26:6631-6636. [PMID: 39087730 DOI: 10.1021/acs.orglett.4c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A method for the assembly of fully substituted furans containing a 3,4-fused 5-8-membered carbocycle, heterocycle, or spirocycle from rhodium(I)-catalyzed and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP)-assisted cascade annulation of 1,n-diynyl nitrones has been developed.
Collapse
Affiliation(s)
- Xiangdong Yu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaowen Ji
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dandan Shang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yu
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | | | - Weidong Rao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo CD. Recent Strategies in the Nucleophilic Dearomatization of Pyridines, Quinolines, and Isoquinolines. Chem Rev 2024; 124:1122-1246. [PMID: 38166390 PMCID: PMC10902862 DOI: 10.1021/acs.chemrev.3c00625] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Gaviña
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
7
|
Alshammari MB, Aly AA, Ahmad A, Brown AB, Mohamed AH. Recent synthetic strategies of spiro-azetidin-2-one, -pyrrolidine, -indol(one) and -pyran derivatives-a review. RSC Adv 2023; 13:32786-32823. [PMID: 37942448 PMCID: PMC10628897 DOI: 10.1039/d3ra06054c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Spiro-heterocycles have received special attention in medicinal chemistry because of their promising biological activity. Over the years, many synthetic methodologies have been established for the construction of spirocyclic compounds. Spiro heterocycles such as spiro-azetidin-2-one, -pyrrolidine, -indol(one) and -pyran derivatives have been found to exhibit diversified biological and pharmacological activity in addition to their therapeutic properties. In view of these facts, we decided in this review to present representative synthetic approaches of the aforementioned spiro heterocycles, especially in the past 20 years.
Collapse
Affiliation(s)
- Mohammed B Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University Al-Kharij Saudi Arabia
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University 61519 El-Minia Egypt
| | - Akil Ahmad
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University Al-Kharij Saudi Arabia
| | - Alan B Brown
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology Melbourne FL 32901 USA
| | - Asmaa H Mohamed
- Chemistry Department, Faculty of Science, Minia University 61519 El-Minia Egypt
| |
Collapse
|
8
|
Lamhauge JN, McLeod DA, Barløse CL, Oliver GA, Viborg L, Warburg T, Anker Jørgensen K. Enantioselective Synthesis of Tropane Scaffolds by an Organocatalyzed 1,3-Dipolar Cycloaddition of 3-Oxidopyridinium Betaines and Dienamines. Chemistry 2023; 29:e202301830. [PMID: 37318111 DOI: 10.1002/chem.202301830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/16/2023]
Abstract
Tropane alkaloids constitute a compound-class which is structurally defined by a central 8-azabicyclo[3.2.1]octane core. A diverse bioactivity profile combined with an unusual aza-bridged bicyclic framework has made tropanes molecules-of-interest within organic chemistry. Enantioselective examples of (5+2) cycloadditions between 3-oxidopyridinium betaines and olefins remain unexplored, despite 3-oxidopyridinium betaines being useful reagents in organic synthesis. The first asymmetric (5+2) cycloaddition of 3-oxidopyridinium betaines is reported, affording tropane derivatives in up to quantitative yield and with excellent control of peri-, regio-, diastereo-, and enantioselectivity. The reactivity is enabled by dienamine-activation of α,β-unsaturated aldehydes combined with in situ formation of the pyridinium reaction-partner. A simple N-deprotection protocol allows for liberation of the tropane alkaloid motif, and synthetic elaborations of the cycloadducts demonstrate their synthetic utility to achieve highly diastereoselective modification around the bicyclic framework. DFT computations suggest a stepwise mechanism where regio- and stereoselectivity are defined during the first bond-forming step in which the pyridinium dipole exerts critical conformational control over its dienamine partner. In the second bond-forming step, a kinetic preference toward an initial (5+4) cycloadduct was identified; however, a lack of catalyst turn-over, reversibility, and thermodynamic bias favoring a (5+2) cycloadduct rendered the reaction fully periselective.
Collapse
Affiliation(s)
- Johannes N Lamhauge
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - David A McLeod
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Casper L Barløse
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Gwyndaf A Oliver
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Laura Viborg
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Tobias Warburg
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Karl Anker Jørgensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| |
Collapse
|
9
|
Wang S, Zhou Y, Xiao W, Li Z, Liu X, Feng X. Asymmetric synthesis of complex tricyclo[3.2.2.0]nonenes from racemic norcaradienes: kinetic resolution via Diels-Alder reaction. Chem Sci 2023; 14:1844-1851. [PMID: 36819855 PMCID: PMC9930936 DOI: 10.1039/d2sc06490a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Herein, the enantioselective synthesis of complex tricyclo[3.2.2.0]nonenes through the Diels-Alder reaction is reported. Utilizing racemic norcaradienes prepared from the visible-light-mediated dearomative cyclopropanation of m-xylene as dienes and enone derivatives as dienophiles, the overall process represents a kinetic asymmetric transformation in the presence of a chiral cobalt(ii) complex of chiral N,N'-dioxide. High diastereo- and enantioselectivity could be obtained in most cycloaddition processes and part racemization of norcaradiene is observed. The topographic steric maps of the catalysts were collected to rationalize the relationship between reactivity and enantioselectivity with the catalysts.
Collapse
Affiliation(s)
- Siyuan Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Wanlong Xiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Zegong Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
10
|
Huang J, Jiang B, Zhang X, Gao Y, Xu X, Miao Z. Triethyamine‐promoted [5+3] Cycloadditions for Regio‐ and Diastereoselective Synthesis of Functionalized aza‐Bicyclo[3.3.1]alkenones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | | | - Zhiwei Miao
- Institute of Elemento-Organic Chemistry CHINA
| |
Collapse
|
11
|
Li L, Chen XS, Hu XP. Intramolecular Copper-Catalyzed Asymmetric Propargylic [4 + 2]- Cycloaddition toward Optically Active Tetrahydroisoindolo[2,1- a]quinoxalines. Org Lett 2022; 24:5433-5438. [PMID: 35856718 DOI: 10.1021/acs.orglett.2c02155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An intramolecular Cu-catalyzed asymmetric propargylic [4 + 2] cycloaddition of bis-N-nucleophile-functionalized propargylic esters has been realized in the support of a chiral tridentate N-ligand, (S,S)-Pybox-diOAc, leading to chiral tetrahydroisoindolo[2,1-a]quinoxalines in high yields and with good to excellent enantioselectivities. The reaction features high efficiency, simplicity, and broad substrate scope, thus providing a powerful and concise strategy for stereoselective access to optically active polycyclic heterocycle frameworks that are otherwise difficult to synthesize.
Collapse
Affiliation(s)
- Ling Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu-Shuai Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
12
|
Zhang Y, Goetzke FW, Christensen KE, Fletcher SP. Asymmetric Synthesis of Nortropanes via Rh-Catalyzed Allylic Arylation. ACS Catal 2022; 12:8995-9002. [PMID: 35966601 PMCID: PMC9361292 DOI: 10.1021/acscatal.2c02259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Indexed: 12/05/2022]
Abstract
![]()
Tropane derivatives are extensively used in medicine,
but catalytic
asymmetric methods for their synthesis are underexplored. Here, we
report Rh-catalyzed asymmetric Suzuki–Miyaura-type cross-coupling
reactions between a racemic N-Boc-nortropane-derived
allylic chloride and (hetero)aryl boronic esters. The reaction proceeds via an unexpected kinetic resolution, and the resolved enantiopure
allyl chloride can undergo highly enantiospecific reactions with N-,
O-, and S-containing nucleophiles. The method was applied in a highly
stereoselective formal synthesis of YZJ-1139(1), a potential insomnia
treatment that recently completed Phase II clinical trials. Our report
represents an asymmetric catalytic method for the synthesis of YZJ-1139(1)
and related compounds.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - F. Wieland Goetzke
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Kirsten E. Christensen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Stephen P. Fletcher
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
13
|
Harry NA, Ujwaldev SM. Recent advances in [5+2] cycloadditions. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220510152025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The existence of a seven-membered cyclic core in several natural products and biomolecules vitalized the research on its synthesis. [5+2] cycloaddition has become a promising strategy for the construction of seven-membered ring systems by the formation of carbon-carbon bonds in a single step, with strong regioselectivity and stereoselectivity. This review mainly focuses on recent developments in the area of [5+2] cycloaddition since 2019. Total synthesis of natural products involving [5+2] cycloaddition as key step leading to heptacyclic core is also discussed. Synthesis of fused and bridged ring systems via the reactions involving inter and intramolecular [5+2] cycloadditions like oxidopyrylium-mediated [5+2] cycloadditions, [5+2] cycloadditions of vinyl cyclopropanes (VCPs), vinyl phenols, etc is explained in the review with the latest examples. This review provides a useful guide for researchers exploring this powerful strategy to create more elegant heptacycles in their future research.
Collapse
|
14
|
Liu M, Xie L, Hou L, Lin L, Feng X. Catalytic asymmetric transformation of nitrones and allenes to dihydropyridoindoles via chiral N, N'-dioxide/cobalt(II) catalysis. Chem Commun (Camb) 2022; 58:5482-5485. [PMID: 35416211 DOI: 10.1039/d2cc01263d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A chiral N,N'-dioxide/cobalt(II) complex catalytic system is developed to promote the multistep cascade reaction of α,β-unsaturated-N-aryl nitrones with allenes, giving a variety of chiral dihydropyridoindoles in moderate to good yields with excellent dr and ee values. Mechanistic studies support a [3+2] cycloaddition/[3,3]-rearrangement/retro-Mannich process.
Collapse
Affiliation(s)
- Mohuizi Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Lihua Xie
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Liuzhen Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
15
|
Das S. Stereoselective synthesis of fused-, spiro- and bridged heterocycles via cyclization of isoquinolinium salts: A recent update. Org Biomol Chem 2022; 20:1838-1868. [DOI: 10.1039/d1ob02478g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isoquinoline and its derivatives are ubiquitous in natural alkaloids, synthetic materials and pharmaceuticals with broad spectrum of biological activities. In particular, isoquinolinium salts are important in organic synthesis because they...
Collapse
|
16
|
Molnár Á. Stereoselective Synthesis of Azacycles Induced by Group 8–11 Late Transition Metals. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 6720 Szeged Hungary
| |
Collapse
|
17
|
Saeed R, Sakla AP, Shankaraiah N. An update on the progress of cycloaddition reactions of 3-methyleneindolinones in the past decade: versatile approaches to spirooxindoles. Org Biomol Chem 2021; 19:7768-7791. [PMID: 34549231 DOI: 10.1039/d1ob01176f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cycloaddition reactions are of great interest due to their potential and rapid construction of optically enriched spiro-cyclic products. 3-Methyleneindolinones have been proven to be a valuable precursor in cycloaddition reactions for the construction of diverse 3,3'-spirocyclic oxindoles. Their versatile reactivity has provided a new forum for the development of a variety of building blocks and synthetic compounds, including bioactive molecules. Herein, significant accomplishments in the cycloaddition reactions of 3-methyleneindolinones for the synthesis of spirooxindoles have been summarised and elaborated. The review is outlined according to the type of cycloaddition such as [2 + 1], [2 + 2], [3 + 2], [4 + 2] and [5 + 2] cycloaddition reactions.
Collapse
Affiliation(s)
- Ruqaiya Saeed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| |
Collapse
|
18
|
Zhang Z, Han H, Wang L, Bu Z, Xie Y, Wang Q. Construction of bridged polycycles through dearomatization strategies. Org Biomol Chem 2021; 19:3960-3982. [PMID: 33978039 DOI: 10.1039/d1ob00096a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bridged polycycles are privileged molecular skeletons with wide occurrence in bioactive natural products and pharmaceuticals. Therefore, they have been the pursing target molecules of numerous chemists. The rapid and convenient generation of sp3-rich complex three-dimensional molecular skeletons from simple and easily available aromatics has made dearomatization a highly valuable synthetic tool for the construction of rigid and challenging bridged rings. This review summarizes the-state-of-the-art advances of dearomatization strategies in the application of bridged ring formation, discusses their advantages and limitations and the in-depth mechanism, and highlights their synthetic value in the total synthesis of natural products. We wish this review will provide an important reference for medicinal and synthetic chemists and will inspire further development in this intriguing research area.
Collapse
Affiliation(s)
- Ziying Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Huabin Han
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Lele Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Zhanwei Bu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yan Xie
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, China.
| | - Qilin Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
19
|
Rodriguez S, Uria U, Reyes E, Prieto L, Rodríguez-Rodríguez M, Carrillo L, Vicario JL. Enantioselective construction of the 8-azabicyclo[3.2.1]octane scaffold: application in the synthesis of tropane alkaloids. Org Biomol Chem 2021; 19:3763-3775. [PMID: 33949549 DOI: 10.1039/d1ob00143d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 8-azabicyclo[3.2.1]octane scaffold is the central core of the family of tropane alkaloids, which display a wide array of interesting biological activities. As a consequence, research directed towards the preparation of this basic structure in a stereoselective manner has attracted attention from many research groups worldwide across the years. Despite this, most of the approaches rely on the enantioselective construction of an acyclic starting material that contains all the required stereochemical information to allow the stereocontrolled formation of the bicyclic scaffold. As an alternative, there are a number of important methodologies reported in which the stereochemical control is achieved directly in the same transformation that generates the 8-azabicyclo[3.2.1]octane architecture or in a desymmetrization process starting from achiral tropinone derivatives. This review compiles the most relevant achievements in these areas.
Collapse
Affiliation(s)
- Sandra Rodriguez
- Department of Organic and Inorganic Chemistry, University of the Basque Country, P. O. Box 644, 48080 Bilbao, Spain.
| | - Uxue Uria
- Department of Organic and Inorganic Chemistry, University of the Basque Country, P. O. Box 644, 48080 Bilbao, Spain.
| | - Efraim Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country, P. O. Box 644, 48080 Bilbao, Spain.
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country, P. O. Box 644, 48080 Bilbao, Spain.
| | - Marta Rodríguez-Rodríguez
- Department of Organic and Inorganic Chemistry, University of the Basque Country, P. O. Box 644, 48080 Bilbao, Spain.
| | - Luisa Carrillo
- Department of Organic and Inorganic Chemistry, University of the Basque Country, P. O. Box 644, 48080 Bilbao, Spain.
| | - Jose L Vicario
- Department of Organic and Inorganic Chemistry, University of the Basque Country, P. O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
20
|
Shan H, Lu C, Zhao B, Yao Y. Asymmetric epoxidation of α,β-unsaturated ketones catalyzed by rare-earth metal amides RE[N(SiMe 3) 2] 3 with chiral TADDOL ligands. NEW J CHEM 2021. [DOI: 10.1039/d0nj05228k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first application of rare-earth metal catalyst combined with TADDOLs in the asymmetric epoxidation of α,β-unsaturated ketones is disclosed.
Collapse
Affiliation(s)
- Haiwen Shan
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Chengrong Lu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Bei Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
21
|
Abstract
This review summaries recent synthetic developments towards spirocyclic oxindoles and applications as valuable medicinal and synthetic targets.
Collapse
Affiliation(s)
- Alexander J. Boddy
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James A. Bull
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|
22
|
Gui H, Meng Z, Xiao Z, Yang Z, Wei Y, Shi M. Stereo‐ and Regioselective Construction of Spirooxindoles Having Continuous Spiral Rings via Asymmetric [3+2] Cyclization of 3‐Isothiocyanato Oxindoles with Thioaurone Derivatives. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hou‐Ze Gui
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
| | - Zhe Meng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
| | - Zhan‐Shuai Xiao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
| | - Ze‐Ren Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Yin Wei
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| |
Collapse
|
23
|
Zhang D, Su Z, He Q, Wu Z, Zhou Y, Pan C, Liu X, Feng X. Diversified Transformations of Tetrahydroindolizines to Construct Chiral 3-Arylindolizines and Dicarbofunctionalized 1,5-Diketones. J Am Chem Soc 2020; 142:15975-15985. [PMID: 32816475 DOI: 10.1021/jacs.0c07066] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enantioselective diverse synthesis of a small-molecule collection with structural and functional similarities or differences in an efficient manner is an appealing but formidable challenge. Asymmetric preparation and branching transformations of tetrahydroindolizines in succession present a useful approach to the construction of N-heterocycle-containing scaffolds with functional group, and stereochemical diversity. Herein, we report a breakthrough toward this end via an initial diastereo- and enantioselective [3 + 2] cycloaddition between pyridinium ylides and enones, following diversified sequential transformations. Chiral N,N'-dioxide-earth metal complexes enable the generation of optically active tetrahydroindolizines in situ, across the strong background reaction for racemate-formation. In connection with deliberate sequential transformations, involving convenient rearomatic oxidation, and light-active aza-Norrish II rearrangement, the tetrahydroindolizine intermediates were converted into the final library including 3-arylindolizine derivatives and dicarbofunctionalized 1,5-dicarbonyl compounds. More importantly, the stereochemistry of four-stereogenic centered tetrahydroindolizine intermediates could be efficiently transferred into axial chirality in 3-arylindolizines and vicinal pyridyl and aryl substituted 1,5-diketones. In addition, densely functionalized cyclopropanes and bridged cyclic compounds were also discovered depending on the nature of the pyridinium ylides. Mechanism studies were involved to explain the stereochemistry during the reaction processes.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qianwen He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhikun Wu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chenjing Pan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|