1
|
Tao M, Qian J, Deng L, Wilson DM, Zhang X, Liu J. Preparation, separation and storage of N-monofluoromethyl amides and carbamates. Nat Chem 2025; 17:532-540. [PMID: 40038519 DOI: 10.1038/s41557-025-01767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025]
Abstract
N-monofluoromethyl (N-CH2F) amides, combining amide and monofluoromethyl motifs, represent a practical modification of the amide bond that can mimic N-CH3 amides. Despite the potential value in transforming peptides and peptidomimetics with N-CH2F, the very existence of this structure has been controversial. Here we report the preparation of N-CH2F amides and carbamates via simple and robust chemical methods. The syntheses of N-CH2F amides were achieved via successive acylation and fluorination of imines and directly used in the modification of drugs, peptides and heteroaryl amides without racemization or epimerization. The use of triethylamine is the key to the separation of N-CH2F amides. The stability of nine structurally diverse N-CH2F amides was tested in eight different media, showing that most compounds remained 60-100% intact for 24 h.
Collapse
Affiliation(s)
- Min Tao
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiasheng Qian
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linbei Deng
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, China
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Xiangsong Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Jianbo Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Sun H, Zhang Q, Tang J, Chen X, Jiang G. Visible-Light Photoredox-Catalyzed Direct Decarboxylative Functionalization of α-Keto Acids. J Org Chem 2024; 89:15225-15233. [PMID: 39377151 DOI: 10.1021/acs.joc.4c02011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A novel and environmentally friendly photocatalytic strategy is presented for generating acyl radicals from benzoylformic acids, which are subsequently trapped by various sulfone-based SOMOphiles. This strategy provides a robust toolkit to access a variety of synthetically important functionalized aryl-ketone derivatives, which efficiently and directly construct acyl-S, acyl-Se, acyl-C, and acyl-N bonds. The broad substrate scope, excellent functional group compatibility, and mild reaction conditions make this protocol practical and attractive.
Collapse
Affiliation(s)
- Huangbin Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qianfan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jie Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiaowen Chen
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, P. R. China
| | - Guofang Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
3
|
Zhu H, Gao C, Yu T, Xu C, Wang M. O-Trifluoromethylation of Carboxylic Acids via the Formation and Activation of Acyloxy(phenyl)trifluoromethyl-λ 3-Iodanes. Angew Chem Int Ed Engl 2024; 63:e202400449. [PMID: 38483081 DOI: 10.1002/anie.202400449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Indexed: 04/10/2024]
Abstract
Here we report the challenging O-trifluoromethylation of carboxylic acids via the formation and activation of acyloxy(phenyl)trifluoromethyl-λ3-iodanes. The method provides an easy access to various potentially valuable and hitherto elusive trifluoromethyl carboxylic esters. A remarkably wide range of substrates with commonly encountered functional groups are compatible with this reaction, including aromatic and aliphatic carboxylic acids, as well as Food and Drug Administration (FDA) approved drugs and pharmaceutically relevant molecules. The reaction mechanism and the origins of the enhanced reactivity by zinc chloride (ZnCl2) were discussed from experimental evidence and density functional theory (DFT) calculation.
Collapse
Affiliation(s)
- Hongye Zhu
- Department Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Chi Gao
- Department Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Ting Yu
- Department Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Cong Xu
- Department Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Mang Wang
- Department Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| |
Collapse
|
4
|
Moskalik MY. Monofluoromethylation of N-Heterocyclic Compounds. Int J Mol Sci 2023; 24:17593. [PMID: 38139426 PMCID: PMC10744182 DOI: 10.3390/ijms242417593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The review focuses on recent advances in the methodologies for the formation or introduction of the CH2F moiety in N-heterocyclic substrates over the past 5 years. The monofluoromethyl group is one of the most versatile fluorinated groups used to modify the properties of molecules in synthetic medical chemistry. The review summarizes two strategies for the monofluoromethylation of N-containing heterocycles: direct monofluoromethylation with simple XCH2F sources (for example, ICH2F) and the assembly of N-heterocyclic structures from CH2F-containing substrates. The review describes the monofluoromethylation of pharmaceutically important three-, five- and six-membered N-heterocycles: pyrrolidines, pyrroles, indoles, imidazoles, triazoles, benzothiazoles, carbazoles, indazoles, pyrazoles, oxazoles, piperidines, morpholines, pyridines, quinolines and pyridazines. Assembling of 6-fluoromethylphenanthridine, 5-fluoromethyl-2-oxazolines, C5-monofluorinated isoxazoline N-oxides, and α-fluoromethyl-α-trifluoromethylaziridines is also shown. Fluoriodo-, fluorchloro- and fluorbromomethane, FCH2SO2Cl, monofluoromethyl(aryl)sulfoniummethylides, monofluoromethyl sulfides, (fluoromethyl)triphenylphosphonium iodide and 2-fluoroacetic acid are the main fluoromethylating reagents in recent works. The replacement of atoms and entire functional groups with a fluorine atom(s) leads to a change and often improvement in activity, chemical or biostability, and pharmacokinetic properties. The monofluoromethyl group is a bioisoster of -CH3, -CH2OH, -CH2NH2, -CH2CH3, -CH2NO2 and -CH2SH moieties. Bioisosteric replacement with the CH2F group is both an interesting task for organic synthesis and a pathway to modify drugs, agrochemicals and useful intermediates.
Collapse
Affiliation(s)
- Mikhail Yu Moskalik
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| |
Collapse
|
5
|
Liu H, Jia M, Sun S, Xu X. Access to 2-thio/selenoquinolines via domino reaction of isocyanides with sulfur and selenium in water. Chem Commun (Camb) 2023; 59:14595-14598. [PMID: 37991823 DOI: 10.1039/d3cc04547a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A domino reaction of o-alkenylaryl isocyanides with elemental sulfur and selenium in pure water was developed for the efficient and green synthesis of quinoline-2-thione and diquinolyl diselenide derivatives. Mechanistical investigation reveals that intramolecular nucleophilic addition of an alkenyl group to the in situ generated isothio/isoselenocyanate accounts for the formation of a quinoline-ring. Moreover, this transformation is also amendable for the convenient preparation of 2-fluoromethylthio-/seleno-quinolines by a one-pot three-component reaction.
Collapse
Affiliation(s)
- Haitao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| | - Mengying Jia
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| | - Shaoguang Sun
- Medical College, Panzhihua University, Panzhihua, Sichuan 617000, China.
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
6
|
Gan XC, Kotesova S, Castanedo A, Green SA, Mølle SLB, Shenvi RA. Iron-Catalyzed Hydrobenzylation: Stereoselective Synthesis of (-)-Eugenial C. J Am Chem Soc 2023; 145:15714-15720. [PMID: 37437221 PMCID: PMC11055631 DOI: 10.1021/jacs.3c05428] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Metal-hydride hydrogen atom transfer (MHAT) has emerged as a useful tool to form quaternary carbons from alkenes via hydrofunctionalization. Methods to date that cross-couple alkenes with sp3 partners rely on heterobimetallic catalysis to merge the two cycles. Here, we report an iron-only cross-coupling via putative MHAT/SH2 steps that solves a key stereochemical problem in the synthesis of meroterpenoid eugenial C and obviates the need for nickel. The concise synthesis benefits from a conformationally locked o,o'-disubstituted benzyl bromide and a locally sourced chiral pool terpene coupling partner.
Collapse
Affiliation(s)
- Xu-cheng Gan
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Simona Kotesova
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Alberto Castanedo
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Samantha A. Green
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | | | - Ryan A. Shenvi
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
7
|
Shen ZJ, Zhu C, Zhang X, Yang C, Rueping M, Guo L, Xia W. Organoboron Reagent-Controlled Selective (Deutero)Hydrodefluorination. Angew Chem Int Ed Engl 2023; 62:e202217244. [PMID: 36525004 DOI: 10.1002/anie.202217244] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
(Deuterium-labeled) CF2 H- and CFH2 -moieties are of high interest in drug discovery. The high demand for the incorporation of these fluoroalkyl moieties into molecular structures has witnessed significant synthetic progress, particularly in the (deutero)hydrodefluorination of CF3 -containing compounds. However, the controllable replacement of fluorine atoms while maintaining high chemoselectivity remains challenging. Herein, we describe the development of a selective (deutero)hydrodefluorination reaction via electrolysis. The reaction exhibits a remarkable chemoselectivity control, which is enabled by the addition of different organoboron sources. The procedure is operationally simple and scalable, and provides access in one step to high-value building blocks for application in medicinal chemistry. Furthermore, density functional theory (DFT) calculations have been carried out to investigate the reaction mechanism and to rationalize the chemoselectivity observed.
Collapse
Affiliation(s)
- Zheng-Jia Shen
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiao Zhang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
8
|
Bertoli G, Martínez ÁM, Goebel JF, Belmonte D, Sivendran N, Gooßen LJ. C-H Fluoromethoxylation of Arenes by Photoredox Catalysis. Angew Chem Int Ed Engl 2023; 62:e202215920. [PMID: 36385731 PMCID: PMC10107189 DOI: 10.1002/anie.202215920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Redox-active N-(fluoromethoxy)benzotriazoles were made accessible from fluoroacetic acid and hydroxybenzotriazoles via electrodecarboxylative coupling. After alkylation, they become effective monofluoromethoxylation reagents, enabling the photocatalytic C-H functionalization of arenes. Thus, irradiation of 1-(OCH2 F)-3-Me-6-(CF3 )benzotriazolium triflate with blue LED light in the presence of [Ru(bpy)3 (PF6 )2 ] promotes the synthesis of diversely functionalized aryl monofluoromethyl ethers. This method allows the late-stage functionalization of biologically relevant structures without relying on ecologically problematic halofluorocarbons.
Collapse
Affiliation(s)
- Giulia Bertoli
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Ángel Manu Martínez
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Jonas F. Goebel
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Debora Belmonte
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Nardana Sivendran
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Lukas J. Gooßen
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
9
|
Guo R, Zhang X, Bu X, Wang M, Zhao B, Gao Y, Jia Q, Wang Y. Se
‐(Fluoromethyl) Benzenesulfonoselenoates: Shelf‐Stable, Easily Available Reagents for Monofluoromethylselenolation. Chemistry 2022; 28:e202200981. [DOI: 10.1002/chem.202200981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Rui‐Li Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Xing‐Long Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Xian‐Pan Bu
- Ankang R&D Center for Se-enriched Products, Key Laboratory of Se-enriched Products Development and Quality Control Ministry of Agriculture and Rural Affairs Ankang Shaanxi 725000 P. R. China
| | - Meng‐Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Bao‐Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Ya‐Ru Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Qiong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Yong‐Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| |
Collapse
|
10
|
Senatore R, Malik M, Pace V. Fluoroiodomethane: A CH2F‐Moiety Delivering Agent Suitable for Nucleophilic‐, Electrophilic‐ and Radical‐Harnessed Operations. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Colella M, Musci P, Andresini M, Spennacchio M, Degennaro L, Luisi R. The synthetic versatility of fluoroiodomethane: recent applications as monofluoromethylation platform. Org Biomol Chem 2022; 20:4669-4680. [PMID: 35587647 DOI: 10.1039/d2ob00670g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, fluoroiodomethane (CH2FI) has emerged as an easy-to-handle, non-ozone depleting agent and readily available platform for monofluoromethylation strategies. Recent applications in nucleophilic substitutions, lithiation reactions, transition-metal catalyzed transformations, radical processes, and 18F-radiolabelling chemistry showcase the potential of this reagent for the preparation of organofluorine compounds. In this minireview, we provide an update to the field covering the recent relevant literature on the use of CH2FI.
Collapse
Affiliation(s)
- Marco Colella
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125 Bari, Italy.
| | - Pantaleo Musci
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125 Bari, Italy.
| | - Michael Andresini
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125 Bari, Italy.
| | - Mauro Spennacchio
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125 Bari, Italy.
| | - Leonardo Degennaro
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125 Bari, Italy.
| | - Renzo Luisi
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro" Via E. Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
12
|
Song Z, Zhu K, Jiang H, Gong H, Ye Z, Zhang F. Synthesis of 1,3-Dioxepine-Fused (Tricyclic) Bispyrazoles Involved with Pyrazolone Derivatives and Dichloromethane. J Org Chem 2022; 87:4284-4290. [PMID: 35262363 DOI: 10.1021/acs.joc.1c03121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple and novel method for the synthesis of novel 1,3-dioxepine-fused (tricyclic) bispyrazoles is described. It involves a Cs2CO3-mediated O-alkylation of readily available pyrazolone derivatives with dichloromethane as the methylene source followed by PhI(OAc)2-mediated intramolecular oxidative biheteroaryl coupling under mild conditions. This scalable protocol was applied for the preparation of valuable and novel 1,3-dioxepine-fused (tricyclic) bispyrazoles that could find applications in medicinal or material chemistry.
Collapse
Affiliation(s)
- Zongqiang Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Kai Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongqiang Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hengfa Gong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zenghui Ye
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, P. R. China
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, P. R. China
| |
Collapse
|
13
|
Zhu W, Xi H, Jiao W, Huang L, Wang L, Wu J. Difunctionalization of gem-Difluoroalkenes via Photoredox Catalysis: Synthesis of Diverse α,α-Difluoromethyl-β-alkoxysulfones. Org Lett 2022; 24:720-725. [PMID: 34981944 DOI: 10.1021/acs.orglett.1c04165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visible-light-promoted alkoxysulfonylation of gem-difluoroalkenes using sulfonyl chlorides and alcohols has been developed. The reaction exhibits a relatively broad substrate scope with excellent functional group compatibility. This synthesis method includes an atom transfer radical addition-like process. The products can be used as platform molecules for further modification.
Collapse
Affiliation(s)
- Wenjuan Zhu
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hui Xi
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou 450001, P. R. China
| | - Wenyang Jiao
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lihua Huang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lianjie Wang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Junliang Wu
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
14
|
Helesbeux JJ, Carro L, McCarthy FO, Moreira VM, Giuntini F, O’Boyle N, Matthews SE, Bayraktar G, Bertrand S, Rochais C, Marchand P. 29th Annual GP2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2021; 14:ph14121278. [PMID: 34959677 PMCID: PMC8708472 DOI: 10.3390/ph14121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
The 29th Annual GP2A (Group for the Promotion of Pharmaceutical chemistry in Academia) Conference was a virtual event this year due to the COVID-19 pandemic and spanned three days from Wednesday 25 to Friday 27 August 2021. The meeting brought together an international delegation of researchers with interests in medicinal chemistry and interfacing disciplines. Abstracts of keynote lectures given by the 10 invited speakers, along with those of the 8 young researcher talks and the 50 flash presentation posters, are included in this report. Like previous editions, the conference was a real success, with high-level scientific discussions on cutting-edge advances in the fields of pharmaceutical chemistry.
Collapse
Affiliation(s)
| | - Laura Carro
- School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Florence O. McCarthy
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, College Road, T12 K8AF Cork, Ireland;
| | - Vânia M. Moreira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Niamh O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
| | - Susan E. Matthews
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Gülşah Bayraktar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey;
| | - Samuel Bertrand
- Institut des Substances et Organismes de la Mer, ISOmer, Nantes Université, UR 2160, F-44000 Nantes, France;
| | - Christophe Rochais
- UNICAEN, CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Normandie Univ., F-14032 Caen, France;
| | - Pascal Marchand
- Cibles et Médicaments des Infections et du Cancer, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
- Correspondence: ; Tel.: +33-253-009-155
| |
Collapse
|
15
|
Panda S, Poudel TN, Hegde P, Aldrich CC. Innovative Strategies for the Construction of Diverse 1'-Modified C-Nucleoside Derivatives. J Org Chem 2021; 86:16625-16640. [PMID: 34756029 DOI: 10.1021/acs.joc.1c01920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modified C-nucleosides have proven to be enormously successful as chemical probes to understand fundamental biological processes and as small-molecule drugs for cancer and infectious diseases. Historically, the modification of the glycosyl unit has focused on the 2'-, 3'-, and 4'-positions as well as the ribofuranosyl ring oxygen. By contrast, the 1'-position has rarely been studied due to the labile nature of the anomeric position. However, the improved chemical stability of C-nucleosides allows the modification of the 1'-position with substituents not found in conventional N-nucleosides. Herein, we disclose new chemistry for the installation of diverse substituents at the 1'-position of C-nucleosides, including alkyl, alkenyl, difluoromethyl, and fluoromethyl substituents, using the 4-amino-7-(1'-hydroxy-d-ribofuranosyl)pyrrolo[2,1-f][1,2,4]triazine scaffold as a representative purine nucleoside mimetic.
Collapse
Affiliation(s)
- Subhankar Panda
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tej Narayan Poudel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Tong C, Xu X, Qing F. Nucleophilic and Radical Heptafluoroisopropoxylation with Redox‐Active Reagents. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chao‐Lai Tong
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Feng‐Ling Qing
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
17
|
Tong CL, Xu XH, Qing FL. Nucleophilic and Radical Heptafluoroisopropoxylation with Redox-Active Reagents. Angew Chem Int Ed Engl 2021; 60:22915-22924. [PMID: 34414643 DOI: 10.1002/anie.202109572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/12/2021] [Indexed: 11/05/2022]
Abstract
The heptafluoroisopropyl group (CF(CF3 )2 ) is prevalent in pharmaceuticals and agrichemicals. However, heptafluoroisopropoxylated (OCF(CF3 )2 ) compounds remain largely underexplored, presumably due to the lack of efficient access to these compounds. Herein, we disclose the practical and efficient heptafluoroisopropoxylation reactions through the invention of a series of redox-active N-OCF(CF3 )2 reagents. These reagents were readily prepared from the oxidative heptafluoroisopropylation of hydroxylamines with AgCF(CF3 )2 . The substitutions on the nitrogen atom significantly affected the properties and reactivities of N-OCF(CF3 )2 reagents. Accordingly, two types of N-OCF(CF3 )2 reagents including N-OCF(CF3 )2 phthalimide A and N-OCF(CF3 )2 benzotriazolium salt O' were used as OCF(CF3 )2 anion and radical precursors, respectively. This protocol enables the direct heptafluoroisopropoxylation of a range of substrates, delivering the corresponding products in moderate to excellent yields.
Collapse
Affiliation(s)
- Chao-Lai Tong
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
18
|
Hell SM, Meyer CF, Ortalli S, Sap JBI, Chen X, Gouverneur V. Hydrofluoromethylation of alkenes with fluoroiodomethane and beyond. Chem Sci 2021; 12:12149-12155. [PMID: 34667580 PMCID: PMC8457377 DOI: 10.1039/d1sc03421a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/07/2021] [Indexed: 01/02/2023] Open
Abstract
A process for the direct hydrofluoromethylation of alkenes is reported for the first time. This straighforward silyl radical-mediated reaction utilises CH2FI as a non-ozone depleting reagent, traditionally used in electrophilic, nucleophilic and carbene-type chemistry, but not as a CH2F radical source. By circumventing the challenges associated with the high reduction potential of CH2FI being closer to CH3I than CF3I, and harnessing instead the favourable bond dissociation energy of the C–I bond, we demonstrate that feedstock electron-deficient alkenes are converted into products resulting from net hydrofluoromethylation with the intervention of (Me3Si)3SiH under blue LED activation. This deceptively simple yet powerful methodology was extended to a range of (halo)methyl radical precursors including ICH2I, ICH2Br, ICH2Cl, and CHBr2F, as well as CH3I itself; this latter reagent therefore enables direct hydromethylation. This versatile chemistry was applied to 18F-, 13C-, and D-labelled reagents as well as complex biologically relevant alkenes, providing facile access to more than fifty products for applications in medicinal chemistry and positron emission tomography. Herein, we report the direct hydro(halo)methylation of alkenes from a variety of (halo)methyl iodides (including F-18, C-13, D-2 isotopologues), enabling the incorporation of a plethora of C-1 fragments into complex biologically active molecules.![]()
Collapse
Affiliation(s)
- Sandrine M Hell
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Claudio F Meyer
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Sebastiano Ortalli
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Jeroen B I Sap
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Xuanxiao Chen
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Véronique Gouverneur
- University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
19
|
Huang B, Chen Y, Zhang X, Yan M. Cross‐Dehydrogenative Coupling of Tetrahydroisoquinolines and 2‐Fluoro‐1,3‐benzodithiole‐1,1,3,3‐tetraoxide: A New Synthetic Approach to α‐Monofluoromethyl Tertiary Amines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bao‐qin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Yuan Chen
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin 300353 China
| | - Xue‐jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
20
|
Synthesis of stable α-fluoromethyl putative carbanions via a chemoselective reduction-monofluoromethylation sequence of diselenides under sustainable conditions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Reichel M, Sile S, Kornath A, Karaghiosoff K. Fluoromethyl-2,4,6-trinitrophenylsulfonate: A New Electrophilic Monofluoromethylating Reagent. J Org Chem 2021; 86:4423-4431. [PMID: 33661635 DOI: 10.1021/acs.joc.0c02670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluoromethyl-2,4,6-trinitrophenylsulfonate has been prepared for the first time and qualified as a simple to use monofluoromethylating reagent. Its molecular structure in the solid state has been determined by single-crystal X-ray diffraction studies. This reagent proves to be effective for the electrophilic introduction of a CH2F group into selected chalcogen and nitrogen nucleophiles. Monofluoromethyl derivatives of various bifunctional N,O-nucleophiles have been synthesized using fluoromethyl-2,4,6-trinitrophenylsulfonate. Due to the good crystallizing properties of the anion, the fluoromethylated products as well as side products that are difficult to identify by nuclear magnetic resonance spectroscopy can readily be characterized by X-ray crystallographic techniques.
Collapse
Affiliation(s)
- Marco Reichel
- Department of Chemistry, Ludwig-Maximilian University Munich, Butenandtstrasse 5-13 (D), 81377 Munich, Germany
| | - Sami Sile
- School of Natural and Environmental Sciences, Agriculture Building, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Andreas Kornath
- Department of Chemistry, Ludwig-Maximilian University Munich, Butenandtstrasse 5-13 (D), 81377 Munich, Germany
| | - Konstantin Karaghiosoff
- Department of Chemistry, Ludwig-Maximilian University Munich, Butenandtstrasse 5-13 (D), 81377 Munich, Germany
| |
Collapse
|
22
|
Sperga A, Melngaile R, Kazia A, Belyakov S, Veliks J. Optimized Monofluoromethylsulfonium Reagents for Fluoromethylene-Transfer Chemistry. J Org Chem 2021; 86:3196-3212. [PMID: 33502201 DOI: 10.1021/acs.joc.0c02561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An investigation of the properties and reactivity of fluoromethylsulfonium salts resulted in the redesign of the reagents for fluoromethylene transfer chemistry. The model reaction, fluorocyclopropanation of nitrostyrene, turned out to be a suitable platform for the discovery of more streamlined fluoromethylene transfer reagents. The incorporation of halides on one aryl ring increased the reactivity, and 2,4-dimethyl substitution on the other aryl ring provided a balance between the reactivity/crystallinity of the reagent as well as the atom economy. The utility of new reagents was demonstrated by the development of an efficient fluorocyclopropanation protocol to access a range of monofluorinated cyclopropane derivatives.
Collapse
Affiliation(s)
- Arturs Sperga
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Renate Melngaile
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Armands Kazia
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Sergey Belyakov
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Janis Veliks
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| |
Collapse
|
23
|
Hu CC, Hu WQ, Xu XH, Qing FL. 2-Position-selective C H fluoromethylation of six-membered heteroaryl N-oxides with (fluoromethyl)triphenylphosphonium iodide. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2020.109695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Senatore R, Malik M, Touqeer S, Listro R, Collina S, Holzer W, Pace V. Straightforward and direct access to β-seleno- amines and sulfonylamides via the controlled addition of phenylselenomethyllithium (LiCH2SePh) to imines. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Reichel M, Karaghiosoff K. Monofluorinated Nitrogen Containing Heterocycles: Synthesis, Characterization and Fluorine Effect. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marco Reichel
- Department of Chemistry Ludwig‐Maximilian‐University Butenandtstr. 5–13 (D) 81377 Munich Germany
| | - Konstantin Karaghiosoff
- Department of Chemistry Ludwig‐Maximilian‐University Butenandtstr. 5–13 (D) 81377 Munich Germany
| |
Collapse
|
26
|
Hong X, Liu Y, Lu L, Shen Q. Monofluoromethyl‐Substituted
Sulfonium Ylides: Preparation,
Structure‐Reactivity
Study and Substrate Scope
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin Hong
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yafei Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Long Lu
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
27
|
Zhao Q, Yao R, Chen W, Lu L, Shen Q. Scalable Synthesis of S-Fluoromethyl Benzenesulfonothioate. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qunchao Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Ruichao Yao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, 2588 Changyang Road, Shanghai 200090, People’s Republic of China
| | - Wenbo Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, 2588 Changyang Road, Shanghai 200090, People’s Republic of China
| | - Long Lu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
28
|
Colella M, Tota A, Takahashi Y, Higuma R, Ishikawa S, Degennaro L, Luisi R, Nagaki A. Fluoro‐Substituted Methyllithium Chemistry: External Quenching Method Using Flow Microreactors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003831] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marco Colella
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Arianna Tota
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Yusuke Takahashi
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Ryosuke Higuma
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Susumu Ishikawa
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Leonardo Degennaro
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Renzo Luisi
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Aiichiro Nagaki
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
29
|
Colella M, Tota A, Takahashi Y, Higuma R, Ishikawa S, Degennaro L, Luisi R, Nagaki A. Fluoro‐Substituted Methyllithium Chemistry: External Quenching Method Using Flow Microreactors. Angew Chem Int Ed Engl 2020; 59:10924-10928. [DOI: 10.1002/anie.202003831] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/30/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Marco Colella
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Arianna Tota
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Yusuke Takahashi
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Ryosuke Higuma
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Susumu Ishikawa
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Leonardo Degennaro
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Renzo Luisi
- Department of Pharmacy—Drug SciencesFlow Chemistry and Microreactor Technology FLAME-LabUniversity of Bari “A. Moro” Via E. Orabona 4 70125 Bari Italy
| | - Aiichiro Nagaki
- Department of Synthetic and Biological ChemistryGraduate School of EngineeringKyoto University Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|