1
|
Fan L, Qu H, Wang B, Li HZ, Yang WW, Guo H, Zhang SS, Long LZ, Liu Y, Zhou G, Fu CG, Liu J. Delivery of liquid metal particles and tanshinone IIA into the pericardial cavity for myocardial infarction treatment. J Mater Chem B 2024; 12:11916-11925. [PMID: 39445792 DOI: 10.1039/d4tb01274g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Owing to their inherent flexibility and excellent biocompatibility, liquid metals (LMs) have been explored at the frontiers of clinical therapy. Herein, a LM and tanshinone IIA (TA) drugs were dispersed into sodium alginate (SA) solution by ultrasonication to prepare SA/LM/TA, which is an injectable biomaterial for stable drug release and intrapericardial injection for the treatment of myocardial infarction (MI). The SA/LM/TA has a low viscosity and can be injected smoothly using a syringe. In rat models of MI, we demonstrated that SA/LM/TA injection in the pericardial cavity is a biosafe and effective method to deliver a carrier containing LM particles and TA drugs for MI treatment. After injection, the drug release is slow and stable in the pericardial cavity, increasing the cardiac retention of drugs. After surgery and treatment for 7 days, the cardiac function of rats improved compared with the control group and the TA direct injection group. The intrapericardial injection of SA/LM/TA improves cardiac functions and mitigates cardiac remodeling post myocardial infarction of rats. Overall, the present study establishes a therapeutic strategy for treatment of myocardial infarction by intrapericardial injection of SA/LM/TA and expands the application categories of LM biomaterials in disease treatments.
Collapse
Affiliation(s)
- Linlin Fan
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Bo Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hong-Zheng Li
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wen-Wen Yang
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hao Guo
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shan-Shan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lin-Zi Long
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yajun Liu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Gang Zhou
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chang-Geng Fu
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Gupta A, Kulkarni S, Soman S, Saha M, Kulkarni J, Rana K, Dhas N, Ayesha Farhana S, Kumar Tiyyagura P, Pandey A, Moorkoth S, Mutalik S. Breaking barriers in cancer management: The promising role of microsphere conjugates in cancer diagnosis and therapy. Int J Pharm 2024; 665:124687. [PMID: 39265846 DOI: 10.1016/j.ijpharm.2024.124687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Cancer is a significant worldwide health concern, and there is a demand for ongoing breakthroughs in treatment techniques. Microspheres are among the most studied drug delivery platforms for delivering cargo to a specified location over an extended period of time. They are biocompatible, biodegradable, and capable of surface modifications. Microspheres and their conjugates have emerged as potential cancer therapeutic options throughout the years. This review provides an in-depth look at the current advancements and applications of microspheres and their conjugates in cancer treatment. The review encompasses a wide array of conjugates, ranging from polymers such as ethyl cellulose and Eudragit to stimuli-responsive polymers, proteins, peptides, polysaccharides such as HA and chitosan, inorganic metals, aptamers, quantum dots (QDs), biomimetic conjugates, and radio conjugates designed for radioembolization. Conjugated microspheres precisely deliver chemotherapeutics to the intended target while achieving controlled drug release to prevent side effects. It offers a means of integrating several distinct therapeutic modalities (chemotherapy, photothermal therapy, photodynamic therapy, radiotherapy, immunotherapy, etc.) to provide synergistic effects during cancer treatment. This review offers insights into the prospects and evolving role of microspheres and their conjugates in the dynamic landscape of cancer therapy. This review provides a comprehensive resource for researchers and clinicians working towards advancements in cancer treatment through innovative applications in therapy and translational research.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Moumita Saha
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jahnavi Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Komal Rana
- Manipal - Government of Karnataka Bioincubator, 3rd Floor, Advanced Research Centre, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, Qassim 51452, Saudi Arabia
| | - Pavan Kumar Tiyyagura
- Department of Chemical Engineering, Manipal Institute of Technology Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Global Drug Development/ Technical Research and Development, Novartis Healthcare Private Limited, Genome Valley, Hyderabad 500081, Telangana, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
3
|
Wang D, Hou Y, Tang J, Liu J, Rao W. Liquid Metal as Energy Conversion Sensitizers: Materials and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304777. [PMID: 38468447 PMCID: PMC11462305 DOI: 10.1002/advs.202304777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/22/2023] [Indexed: 03/13/2024]
Abstract
Energy can exist in nature in a wide range of forms. Energy conversion refers to the process in which energy is converted from one form to another, and this process will be greatly enhanced by energy conversion sensitizers. Recently, an emerging class of new materials, namely liquid metals (LMs), shows excellent prospects as highly versatile materials. Notably, in terms of energy delivery and conversion, LMs functional materials are chemical responsive, heat-responsive, photo-responsive, magnetic-responsive, microwave-responsive, and medical imaging responsive. All these intrinsic virtues enabled promising applications in energy conversion, which means LMs can act as energy sensitizers for enhancing energy conversion and transport. Herein, first the unique properties of the light, heat, magnetic and microwave converting capacity of gallium-based LMs materials are summarized. Then platforms and applications of LM-based energy conversion sensitizers are highlighted. Finally, some of the potential applications and opportunities of LMs are prospected as energy conversion sensitizers in the future, as well as unresolved challenges. Collectively, it is believed that this review provides a clear perspective for LMs mediated energy conversion, and this topic will help deepen knowledge of the physical chemistry properties of LMs functional materials.
Collapse
Affiliation(s)
- Dawei Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)School of Pharmaceutical SciencesGuizhou UniversityGuiyangGuizhou Province550025China
| | - Yi Hou
- Key Laboratory of Cryogenic Science and TechnologyBeijing Key Lab of CryoBiomedical Engineering and Key Lab of CryogenicsTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jianbo Tang
- School of Chemical EngineeringUniversity of New South Wales (UNSW)KensingtonNSW2052Australia
| | - Jing Liu
- Liquid Metal and Cryogenic Biomedical Research CenterBeijing Key Lab of CryoBiomedical Engineering and Key Lab of CryogenicsTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
- Department of Biomedical EngineeringSchool of MedicineTsinghua UniversityBeijing100084China
| | - Wei Rao
- Key Laboratory of Cryogenic Science and TechnologyBeijing Key Lab of CryoBiomedical Engineering and Key Lab of CryogenicsTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
4
|
Jiang Z, Fu Y, Shen H. Development of Intratumoral Drug Delivery Based Strategies for Antitumor Therapy. Drug Des Devel Ther 2024; 18:2189-2202. [PMID: 38882051 PMCID: PMC11179649 DOI: 10.2147/dddt.s467835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
Research for tumor treatment with significant therapy effects and minimal side-effects has been widely carried over the past few decades. Different drug forms have received a lot of attention. However, systemic biodistribution induces efficacy and safety issues. Intratumoral delivery of agents might overcome these problems because of its abundant tumor accumulation and retention, thereby reducing side effects. Delivering hydrogels, nanoparticles, microneedles, and microspheres drug carriers directly to tumors can realize not only targeted tumor therapy but also low side-effects. Furthermore, intratumoral administration has been integrated with treatment strategies such as chemotherapy, enhancing radiotherapy, immunotherapy, phototherapy, magnetic fluid hyperthermia, and multimodal therapy. Some of these strategies are ongoing clinical trials or applied clinically. However, many barriers hinder it from being an ideal and widely used option, such as decreased drug penetration impeded by collagen fibers of a tumor, drug squeezed out by high density and high pressure, mature intratumoral injection technique. In this review, we systematically discuss intratumoral delivery of different drug carriers and current development of intratumoral therapy strategies.
Collapse
Affiliation(s)
- Zhimei Jiang
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
| | - Yuzhi Fu
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
| | - Hongxin Shen
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital of Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People’s Republic of China
| |
Collapse
|
5
|
Cao Y, Fan L, Gao J, Zhu X, Wu B, Wang H, Wang B, Shi J, Liu J. Magnetic and injectable Fe-doped liquid metals for controlled movement and photothermal/electromagnetic therapy. J Mater Chem B 2024; 12:2313-2323. [PMID: 38268450 DOI: 10.1039/d3tb02501b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
As a multifunctional material, gallium-based liquid metal (LM) mixtures with metal particles dispersed in the LM environment display many excellent and intriguing properties. In this study, biomaterials were prepared by mixing Fe particles with LM for easily manageable photothermal or electromagnetic therapy and evaluated. Clinically, the fabricated 5%Fe/LM sample was injectable and radiopaque, which allowed its smooth delivery through a syringe to the target tissues, where it could help achieve clear imaging under CT. Meanwhile, because of the loading of Fe particles, the 5%Fe/LM possessed a magnetic property, implying a high manipulation capability. According to the experiments, the capsule containing 5%Fe/LM when placed in an isolated pig large intestine could move as desired to the designated position through an external magnet. Further, the biosafety and low toxicity of the 5%Fe/LM were confirmed by cytotoxicity tests in vitro, and the temperature changes at the interface between the 5%Fe/LM and intestinal tissue after near-infrared (NIR) laser irradiation were determined through theoretical modeling and numerical simulation data analysis. Due to the excellent photothermal and magnetothermal effects of LM, the temperature of the 5%Fe/LM injected into the rabbit abdominal cavity could significantly increase under NIR laser or alternating magnetic field (AMF) administration. As a novel functional biomaterial, the 5%Fe/LM exhibited promising potential for designated position movement and photothermal or magnetothermal therapy in the near future.
Collapse
Affiliation(s)
- Yingjie Cao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Linlin Fan
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China.
| | - Jianye Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Xiyu Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Bingjie Wu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Hongzhang Wang
- Center of Double Helix, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Bo Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jun Shi
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Huang Z, Guan M, Bao Z, Dong F, Cui X, Liu G. Ligand Mediation for Tunable and Oxide Suppressed Surface Gold-Decorated Liquid Metal Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306652. [PMID: 37806762 DOI: 10.1002/smll.202306652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/25/2003] [Indexed: 10/10/2023]
Abstract
Gallium-based liquid metal systems hold vast potential in materials science. However, maximizing their possibilities is hindered by gallium's native oxide and interfacial functionalization. In this study, small-molecule ligands are adopted as surfactants to modify the surface of eutectic gallium indium (EGaIn) nanoparticles and suppress oxidation. Different p-aniline derivatives are explored. Next, the reduction of chloroanric acid (HAuCl4 ) onto these p-aniline ligand modified EGaIn nanoparticles is investigated to produce gold-decorated EGaIn nanosystems. It is found that by altering the concentrations of HAuCl4 or the p-aniline ligand, the formation of gold nanoparticles (AuNPs) on EGaIn can be manipulated. The reduction of interfacial oxidation and presence of AuNPs enhances electrical conductivity, plasmonic performance, wettability, stability, and photothermal performance of all the p-aniline derivative modified EGaIn. Of these, EGaIn nanoparticles covered with the ligand of p-aminobenzoic acid offer the most evenly distributed AuNPs decoration and perfect elimination of gallium oxides, resulting in the augmented electrical conductivity, and highest wettability suitable for patterning, enhanced aqueous stability, and favorable photothermal properties. The proof-of-concept application in photothermal therapy of cancer cells demonstrates significantly enhanced photothermal conversion performance along with good biocompatibility. Due to such unique characteristics, the developed gold-decorated EGaIn nanodroplets are expected to offer significant potential in precise medicine.
Collapse
Affiliation(s)
- Ziyang Huang
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| | - Mingyang Guan
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| | - Ziting Bao
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| | - Fengyi Dong
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| | - Xiaolin Cui
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| | - Guozhen Liu
- CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, China
| |
Collapse
|
7
|
Timosina V, Cole T, Lu H, Shu J, Zhou X, Zhang C, Guo J, Kavehei O, Tang SY. A Non-Newtonian liquid metal enabled enhanced electrography. Biosens Bioelectron 2023; 235:115414. [PMID: 37236012 DOI: 10.1016/j.bios.2023.115414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Biopotential signals, like electrocardiography (ECG), electromyography (EMG), and electroencephalography (EEG), can help diagnose cardiological, musculoskeletal and neurological disorders. Dry silver/silver chloride (Ag/AgCl) electrodes are commonly used to obtain these signals. While a conductive hydrogel can be added to Ag/AgCl electrodes to improve the contact and adhesion between the electrode and the skin, dry electrodes are prone to movement. Considering that the conductive hydrogel dries over time, the use of these electrodes often creates an imbalanced skin-electrode impedance and a number of sensing issues in the front-end analogue circuit. This issue can be extended to several other electrode types that are commonly in use, in particular, for applications with a need for long-term wearable monitoring such as ambulatory epilepsy monitoring. Liquid metal alloys, such as eutectic gallium indium (EGaIn), can address key critical requirements around consistency and reliability but present challenges on low viscosity and the risk of leakage. To solve these problems, here, we demonstrate the use of a non-eutectic Ga-In alloy as a shear-thinning non-Newtonian fluid to offer superior performance to commercial hydrogel electrodes, dry electrodes, and conventional liquid metals for electrography measurements. This material has high viscosity when still and can flow like a liquid metal when sheared, preventing leakage while allowing the effective fabrication of electrodes. Moreover, the Ga-In alloy not only has good biocompatibility but also offers an outstanding skin-electrode interface, allowing for the long-term acquisition of high-quality biosignals. The presented Ga-In alloy is a superior alternative to conventional electrode materials for real-world electrography or bioimpedance measurement.
Collapse
Affiliation(s)
- Veronika Timosina
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tim Cole
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hongda Lu
- School of Mechanical, Materials, Mechatronic, and Biomedical Engineering, University of Wollongong, Wollongong, Australia
| | - Jian Shu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Xiangbo Zhou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Chengchen Zhang
- Graduate School of Biomedical Engineering, University of New South Wales, NSW, 2052, Australia
| | - Jinhong Guo
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Omid Kavehei
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW, 2006, Australia.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
8
|
Lee W, Lee CE, Kim HJ, Kim K. Current Progress in Gallium-based Liquid Metals for Combinatory Phototherapeutic Anticancer Applications. Colloids Surf B Biointerfaces 2023; 226:113294. [PMID: 37043951 DOI: 10.1016/j.colsurfb.2023.113294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
A variety of therapeutic approaches using liquid metal (LM) have been intensively investigated, due to its unique physico-chemical properties that include high surface tension, fluidity, shape deformability, thermal conductivity, and electrical conductivity. Among a series of LMs, the relatively lower toxicity and minimal volatility of gallium (Ga)-based LMs (GaLMs) enables their usage in a series of potential biomedical applications, especially implantable platforms, to treat multiple diseases. In addition, the highly efficient conversion of light energy into thermal or chemical energy via GaLMs has led to recent developments in photothermal and photodynamic applications for anticancer treatments. As attractive photothermal agents or photosensitizers, a systematic interpretation of the structural characteristics and photo-responsive behaviors of GaLMs is necessary to develop effective anticancer engineering applications. Therefore, the aim of this review is to provide a comprehensive summary of currently suggested GaLM-mediated photo-therapeutic cancer treatments. In particular, the review summarizes (1) surface coating techniques to form stable and multifunctional GaLM particulates, (2) currently investigated GaLM-mediated photothermal and photodynamic anticancer therapies, (3) synergistic efficacies with the aid of additional interventions, and (4) 3D composite gels embedded with GaLMs particles, to convey the potential technological advances of LM in this field.
Collapse
|
9
|
Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioact Mater 2022; 18:471-491. [PMID: 35415299 PMCID: PMC8971585 DOI: 10.1016/j.bioactmat.2022.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Flexible polymeric patches find widespread applications in biomedicine because of their biological and tunable features including excellent patient compliance, superior biocompatibility and biodegradation, as well as high loading capability and permeability of drug. Such polymeric patches are classified into microneedles (MNs), hydrogel, microcapsule, microsphere and fiber depending on the formed morphology. The combination of nanomaterials with polymeric patches allows for improved advantages of increased curative efficacy and lowered systemic toxicity, promoting on-demand and regulated drug administration, thus providing the great potential to their clinic translation. In this review, the category of flexible polymeric patches that are utilized to integrate with nanomaterials is briefly presented and their advantages in bioapplications are further discussed. The applications of nanomaterials embedded polymeric patches in non-cancerous diseases were also systematically reviewed, including diabetes therapy, wound healing, dermatological disease therapy, bone regeneration, cardiac repair, hair repair, obesity therapy and some immune disease therapy. Alternatively, the limitations, latest challenges and future perspectives of such biomedical therapeutic devices are addressed. The most explored polymeric patches, such as microneedle, hydrogel, microsphere, microcapsule, and fiber are summarized. Polymeric patches integrated with a diversity of nanomaterials are systematically overviewed in non-cancer therapy. The future prospective for the development of polymeric patch based nanotherapeutics is discussed.
Collapse
|
10
|
Wang Y, Mai W, Yin T, Zhang S, Liu Z. Magneto-acoustic-electrical tomography combining maximum length sequence-coded excitation and liquid metal image contrast agent. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1941-1956. [PMID: 35835624 DOI: 10.1016/j.ultrasmedbio.2022.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Magneto-acoustic-electrical tomography (MAET) combines the advantages of ultrasound and electrical impedance functional tomography methods and has important research value in the early diagnosis of tumors and biocurrent monitoring. In this study, we propose a MAET method combining liquid metal image enhancement and maximum length sequence (MLS)-coded excitation to improve the signal-to-noise ratio (SNR) of MAET. The results indicate that liquid metal can achieve image enhancement of tissue MAET. When 7-, 15-, 31- and 63-bit MLS-coded excitations were applied to the samples, the SNR was improved by 28, 34, 40 and 45 dB, respectively. For a similar SNR improvement, the total used time under 31-bit MLS-coded excitation can be shortened to 23% under single-pulse excitation. The experimental results prove the feasibility of applying the MLS code to rotational MAET and reveal the significance of liquid metal as an image intensifier to improve the quality of MAET.
Collapse
Affiliation(s)
- Yuheng Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 236, Baidi Road, Nankai District, Tianjin, China
| | - Wenshu Mai
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 236, Baidi Road, Nankai District, Tianjin, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 236, Baidi Road, Nankai District, Tianjin, China
| | - Shunqi Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 236, Baidi Road, Nankai District, Tianjin, China.
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 236, Baidi Road, Nankai District, Tianjin, China.
| |
Collapse
|
11
|
Sun X, Wang J, Wang Z, Zhu C, Xi J, Fan L, Han J, Guo R. Gold nanorod@void@polypyrrole yolk@shell nanostructures: Synchronous regulation of photothermal and drug delivery performance for synergistic cancer therapy. J Colloid Interface Sci 2021; 610:89-97. [PMID: 34922085 DOI: 10.1016/j.jcis.2021.11.189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022]
Abstract
Synergistic therapy has been emerging as new trend for effective tumor treatment due to synchronous function and cooperative reinforcement of multi therapeutic modalities. Herein, gold nanorods (GNRs) encapsulated into polypyrrole (PPy) shell with tunable void space (GNRs@Void@PPy) showing yolk@shell nanostructures were innovatively designed. The exploitation of dual near-infrared (NIR) absorptive species offered synergistic enhancement of photothermal performance. In addition, the manipulation of the void space between them provided additional benefits of high drug encapsulation efficiency (92.6%) and, interestingly, tumor microenvironment and NIR irradiation triggered targeted drug releasing. Moreover, the GNRs@Void@PPy exhibited excellent biocompatibility, and optimal curative effect by chemo-photothermal synergistic therapy was achieved through both in vitro and in vivo antitumor activity investigation.
Collapse
Affiliation(s)
- Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Juan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Ziyao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Chunhua Zhu
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Juqun Xi
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| |
Collapse
|
12
|
Liu L, Wang D, Rao W. Mini/Micro/Nano Scale Liquid Metal Motors. MICROMACHINES 2021; 12:280. [PMID: 33800226 PMCID: PMC8001611 DOI: 10.3390/mi12030280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Swimming motors navigating in complex fluidic environments have received tremendous attention over the last decade. In particular, liquid metal (LM) as a new emerging material has shown considerable potential in furthering the development of swimming motors, due to their unique features such as fluidity, softness, reconfigurability, stimuli responsiveness, and good biocompatibility. LM motors can not only achieve directional motion but also deformation due to their liquid nature, thus providing new and unique capabilities to the field of swimming motors. This review aims to provide an overview of the recent advances of LM motors and compare the difference in LM macro and micromotors from fabrication, propulsion, and application. Here, LM motors below 1 cm, named mini/micro/nano scale liquid metal motors (MLMTs) will be discussed. This work will present physicochemical characteristics of LMs and summarize the state-of-the-art progress in MLMTs. Finally, future outlooks including both opportunities and challenges of mini/micro/nano scale liquid metal motors are also provided.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.W.)
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Dawei Wang
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.W.)
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Rao
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.W.)
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Li H, Qiao R, Davis TP, Tang SY. Biomedical Applications of Liquid Metal Nanoparticles: A Critical Review. BIOSENSORS 2020; 10:E196. [PMID: 33266097 PMCID: PMC7760560 DOI: 10.3390/bios10120196] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022]
Abstract
This review is focused on the basic properties, production, functionalization, cytotoxicity, and biomedical applications of liquid metal nanoparticles (LMNPs), with a focus on particles of the size ranging from tens to hundreds of nanometers. Applications, including cancer therapy, medical imaging, and pathogen treatment are discussed. LMNPs share similar properties to other metals, such as photothermal conversion ability and a propensity to form surface oxides. Compared to many other metals, especially mercury, the cytotoxicity of gallium is low and is considered by many reports to be safe when applied in vivo. Recent advances in exploring different grafting molecules are reported herein, as surface functionalization is essential to enhance photothermal therapeutic effects of LMNPs or to facilitate drug delivery. This review also outlines properties of LMNPs that can be exploited in making medical imaging contrast agents, ion channel regulators, and anti-pathogenic agents. Finally, a foresight is offered, exemplifying underexplored knowledge and highlighting the research challenges faced by LMNP science and technology in expanding into applications potentially yielding clinical advances.
Collapse
Affiliation(s)
- Haiyue Li
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA;
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
14
|
Xie W, Allioux FM, Ou JZ, Miyako E, Tang SY, Kalantar-Zadeh K. Gallium-Based Liquid Metal Particles for Therapeutics. Trends Biotechnol 2020; 39:624-640. [PMID: 33199046 DOI: 10.1016/j.tibtech.2020.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
Gallium (Ga) and Ga-based liquid metal (LM) alloys offer low toxicity, excellent electrical and thermal conductivities, and fluidity at or near room temperature. Ga-based LM particles (LMPs) synthesized from these LMs exhibit both fluidic and metallic properties and are suitable for versatile functionalization in therapeutics. Functionalized Ga-based LMPs can be actuated using physical or chemical stimuli for drug delivery, cancer treatment, bioimaging, and biosensing. However, many of the fundamentals of their unique characteristics for therapeutics remain underexplored. We present the most recent advances in Ga-based LMPs in therapeutics based on the underlying mechanisms of their design and implementation. We also highlight some future biotechnological opportunities for Ga-based LMPs based on their extraordinary advantages.
Collapse
Affiliation(s)
- Wanjie Xie
- School of Chemical Engineering, University of New South Wales, Kensington, NSW 2052, Australia
| | - Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales, Kensington, NSW 2052, Australia
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales, Kensington, NSW 2052, Australia.
| |
Collapse
|