1
|
Liu X, Shao Y, Li Y, Chen Z, Shi T, Tong Q, Zou X, Ju L, Pan J, Zhuang R, Pan X. Extensive Review of Nanomedicine Strategies Targeting the Tumor Microenvironment in PDAC. Int J Nanomedicine 2025; 20:3379-3406. [PMID: 40125427 PMCID: PMC11927507 DOI: 10.2147/ijn.s504503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in the world, mainly because of its powerful pro-connective tissue proliferation matrix and immunosuppressive tumor microenvironment (TME), which promote tumor progression and metastasis. In addition, the extracellular matrix leads to vascular collapse, increased interstitial fluid pressure, and obstruction of lymphatic return, thereby hindering effective drug delivery, deep penetration, and immune cell infiltration. Therefore, reshaping the TME to enhance tumor perfusion, increase deep drug penetration, and reverse immune suppression has become a key therapeutic strategy. Traditional therapies for PDAC, including surgery, radiation, and chemotherapy, face significant limitations. Surgery is challenging due to tumor location and growth, while chemotherapy and radiation are hindered by the dense extracellular matrix and immunosuppressive TME. In recent years, the advancement of nanotechnology has provided new opportunities to improve drug efficacy. Nanoscale drug delivery systems (NDDSs) provide several advantages, including improved drug stability in vivo, enhanced tumor penetration, and reduced systemic toxicity. However, the clinical translation of nanotechnology in PDAC therapy faces several challenges. These include the need for precise targeting and control over drug release, potential immune responses to the nanocarriers, and the scalability and cost-effectiveness of production. This article provides an overview of the latest nanobased methods for achieving better therapeutic outcomes and overcoming drug resistance. We pay special attention to TME-targeted therapy in the context of PDAC, discuss the advantages and limitations of current strategies, and emphasize promising new developments. By emphasizing the enormous potential of NDDSs in improving the treatment outcomes of patients with PDAC, while critically discussing the limitations of traditional therapies and the challenges faced by nanotechnology in achieving clinical breakthroughs, our review paves the way for future research in this rapidly developing field.
Collapse
Affiliation(s)
- Xing Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311400, People’s Republic of China
| | - Yidan Shao
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Yunjiang Li
- Radiology Department, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Zuhua Chen
- Radiology Department, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Tingting Shi
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Qiao Tong
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Xi Zou
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Liping Ju
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Jinming Pan
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Xuwang Pan
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| |
Collapse
|
2
|
Nagarajan Y, Chandrasekaran N, Deepa Parvathi V. Functionalized Nanomaterials In Pancreatic Cancer Theranostics And Molecular Imaging. ChemistryOpen 2025; 14:e202400232. [PMID: 39434498 PMCID: PMC11726697 DOI: 10.1002/open.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Indexed: 10/23/2024] Open
Abstract
Pancreatic cancer (PC) is one of the most fatal malignancies in the world. This lethality persists due to lack of effective and efficient treatment strategies. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive epithelial malignancy which has a high incidence rate and contributes to overall cancer fatalities. As of 2022, pancreatic cancer contributes to about 3 % of all cancers globally. Over the years, research has characterised germline predisposition, the origin cell, precursor lesions, genetic alterations, structural alterations, transcriptional changes, tumour heterogeneity, metastatic progression, and the tumour microenvironment, which has improved the understanding of PDAC carcinogenesis. By using molecular-based target therapies, these fundamental advancements support primary prevention, screening, early detection, and treatment. The focus of this review is the use of targeted nanoparticles as an alternative to conventional pancreatic cancer treatment due to the various side effects of the latter. The principles of nanoparticle based cancer therapy is efficient targeting of tumour cells via enhanced permeability and retention (EPR) effects and decrease the chemotherapy side effects due to their non-specificity. To increase the efficiency of existing therapies and modify target nanoparticles, several molecular markers of pancreatic cancer cells have been identified. Thus pancreatic cancer cells can be detected using appropriately functionalized nanoparticles with specific signalling molecules. Once cancer has been identified, these nanoparticles can kill the tumour by inducing hyperthermia, medication delivery, immunotherapy or gene therapy. As potent co-delivery methods for adjuvants and tumor-associated antigens; nanoparticles (NPs) have demonstrated significant promise as delivery vehicles in cancer therapy. This ensures the precise internalization of the functionalized nanoparticle and thus also activates the immune system effectively against tumor cells. This review also discusses the immunological factors behind the uptake of functionalized nanoparticles in cancer therapies. Theranostics, which combine imaging and therapeutic chemicals in a single nanocarrier, are the next generation of medicines. Pancreatic cancer treatment may be revolutionised by the development of a tailored nanocarrier with diagnostic, therapeutic, and imaging capabilities. It is extremely difficult to incorporate various therapeutic modalities into a single nanocarrier without compromising the individual functionalities. Surface modification of nanocarriers with antibodies or proteins will enable to attain multifunctionality which increases the efficiency of pancreatic cancer therapy.
Collapse
Affiliation(s)
- Yoghalakshmi Nagarajan
- Department of Biomedical SciencesFaculty of Biomedical Sciences & TechnologySri Ramachandra Institute of Higher Education and Research (SRIHER)Tamil NaduChennai600116India
| | - Natarajan Chandrasekaran
- Senior Professor & Former DirectorCentre for NanobiotechnologyVellore Institute of Technology (VIT)Vellore Campus, Tiruvalam roadTamil NaduKatpadiVellore 632014
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical SciencesFaculty of Biomedical Sciences & TechnologySri Ramachandra Institute of Higher Education and Research (SRIHER)Tamil NaduChennai600116India
| |
Collapse
|
3
|
Saadh MJ, Mustafa MA, Malathi H, Ahluwalia G, Kaur S, Al-Dulaimi MAAH, Alubiady MHS, Zain Al-Abdeen SH, Shakier HG, Ali MS, Ahmad I, Abosaoda MK. Targeting the pancreatic tumor microenvironment by plant-derived products and their nanoformulations. Med Oncol 2024; 41:201. [PMID: 39001987 DOI: 10.1007/s12032-024-02443-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
Pancreatic cancer remains a significant health issue with limited treatment options. The tumor stroma, a complex environment made up of different cells and proteins, plays a crucial role in tumor growth and chemoresistance. Targeting tumor stroma, consisting of diverse non-tumor cells such as fibroblasts, extracellular matrix (ECM), immune cells, and also pre-vascular cells is encouraging for remodeling solid cancers, such as pancreatic cancer. Remodeling the stroma of pancreas tumors can be suggested as a strategy for reducing resistance to chemo/immunotherapy. Several studies have shown that phytochemicals from plants can affect the tumor environment and have anti-cancer properties. By targeting key pathways involved in stromal activation, phytochemicals may disrupt communication between the tumor and stroma and make tumor cells more sensitive to different treatments. Additionally, phytochemicals have immunomodulatory and anti-angiogenic properties, all of which contribute to their potential in treating pancreatic cancer. This review will provide a detailed look at how phytochemicals impact the tumor stroma and their effects on pancreatic tumor growth, spread, and response to treatment. It will also explore the potential of combining phytochemicals with other treatment options like chemotherapy, immunotherapy, and radiation.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Gunveen Ahluwalia
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sumeet Kaur
- Department of Applied Sciences, Chandigarh Engineering Colleges, Chandigarh Group of Colleges, Jhanjeri, 140307, Mohali, Punjab, India
| | | | | | | | | | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
4
|
Nasri N, Saharkhiz S, Dini G, Yousefnia S. Thermo- and pH-responsive targeted lipid-coated mesoporous nano silica platform for dual delivery of paclitaxel and gemcitabine to overcome HER2-positive breast cancer. Int J Pharm 2023; 648:123606. [PMID: 37972671 DOI: 10.1016/j.ijpharm.2023.123606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
In the current study, a new monoclonal antibody conjugated dual stimuli lipid-coated mesoporous silica nanoparticles (L-MSNs) platform was developed and investigated for specific co-delivery of the paclitaxel (PTX) and gemcitabine (Gem) to cancer cells and preventing their side effects during the treatment process. First, MSNs were synthesized and then coated with as-prepared pH-, and thermo-sensitive niosomes to produce L-MSNs. For this aim, Dipalmitoylphosphatidylcholine (DPPC) was used to create thermo-sensitivity, and 1, 2-Distearoyl-sn-glycerol-3-phosphoethanolamine -Citraconic Anhydride-Polyethylene Glycol (DSPE-CA-PEG) polymers were prepared and incorporated to the lipid layer for creation of pH-sensitivity. In the next step, trastuzumab as a monoclonal antibody (mAb) was conjugated to the maleimide groups of the 1, 2-Distearoyl-sn-glycerol-3-phosphoethanolamine DSPE-polyethylene glycol (PEG)-maleimide agents in the lipid bilayer via a disulfide bond. Dynamic light scattering (DLS) and zeta potential measurements, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and scanning electron microscopy (SEM) analyses were utilized to characterize the synthesized particles before and after surface modification. The encapsulation efficiency (EE%) and loading efficiency (LE%) of the particles were also evaluated. Additionally, the drug release study and MTT assay were done to evaluate the bioactivity potential of the fabricated platforms. The results of DLS and zeta potential measurements revealed an average size of 200 nm and a neutral zeta potential of about -1 mV for mAb-L-MSNs. Also, the FTIR spectra confirmed the formation of mAb-L-MSNs. Moreover, SEM analysis showed spherical-shaped MSNs with amorphous structure confirmed by XRD analysis, and BET test revealed ∼ 820 m2/g specific surface area and pore about 5 nm in size. The values of EE% and LE% of PTX were 90.3 % and 26.7 %, while these values for GEM were 89.5 % and 38.8 % in the co-loaded form, respectively. The thermo-pH-sensitivity examination showed approximately 500 nm of size increase after the change of pH and temperature from 7.4 and 37˚C to 5 and 42˚C. The release profile showed a pH-, and thermo-dependence manner, which led to about 89 % and 95 % of PTX and GEM released from the co-loaded platform at a pH of 5 and 42 °C while these values were 31.1 % and 32.2 % at pH of 7.4 and 37˚C, respectively. MTT assay data presented that when the mAb-L-co-loaded-MSNs platform containing 250 µg/mL drug was used, about 92 % of cells died in human epidermal receptors (HER2)-positive breast cancer cells (SKBR3), while just about 4 % of HER2-negative normal cells were killed. However, the growth inhibition rate of SKBR3 cells was caused by empty-mAb-L-MSNs, pure PTX and GEM combination were 9 % and 87 %, respectively. Moreover, the half inhibitory concentration (IC50) of the pure PTX, pure GEM, and mAb-coloaded-L-MSNs were 33, 17.6, and 6.5 µg/mL. The synergic effect of co-encapsulation of PTX and GEM in addition to trastuzumab conjugated L-MSNs was confirmed by a combinational index (CI) of 0.34. Therefore, this strategy leads to specific targeted drug delivery to cancer cells using a key-lock interaction between the trastuzumab and HER-2 receptors on the cancer cell membrane which stimuli the endocytosis of the particles to the cells followed by the destruction of the lipid layer in the acidic pH and the temperature of the lysosome, leading to enhanced release of PTX and GEM (pH of 5 and 42˚C). So, this platform can be considered a suitable carrier for cancer treatment.
Collapse
Affiliation(s)
- Negar Nasri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Shaghayegh Saharkhiz
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Ghasem Dini
- Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Saghar Yousefnia
- Department of Cell and Molecular Biology, Semnan University, Semnan, Iran
| |
Collapse
|
5
|
Hu Y, Song J, Feng A, Li J, Li M, Shi Y, Sun W, Li L. Recent Advances in Nanotechnology-Based Targeted Delivery Systems of Active Constituents in Natural Medicines for Cancer Treatment. Molecules 2023; 28:7767. [PMID: 38067497 PMCID: PMC10708032 DOI: 10.3390/molecules28237767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Owing to high efficacy and safety, natural medicines have found their way into the field of cancer therapy over the past few decades. However, the effective ingredients of natural medicines have shortcomings of poor solubility and low bioavailability. Nanoparticles can not only solve the problems above but also have outstanding targeting ability. Targeting preparations can be classified into three levels, which are target tissues, cells, and organelles. On the premise of clarifying the therapeutic purpose of drugs, one or more targeting methods can be selected to achieve more accurate drug delivery and consequently to improve the anti-tumor effects of drugs and reduce toxicity and side effects. The aim of this review is to summarize the research status of natural medicines' nano-preparations in tumor-targeting therapies to provide some references for further accurate and effective cancer treatments.
Collapse
Affiliation(s)
- Yu Hu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Jizheng Song
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Anjie Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Jieyu Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Mengqi Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Yu Shi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Wenxiu Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| | - Lingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan 250355, China
| |
Collapse
|
6
|
Albogamy NTS, Aboushoushah SF, Aljoud F, Organji H, Elbialy NS. Preparation and characterization of dextran-zein-curcumin nanoconjugate for enhancement of curcumin bioactivity. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1891-1910. [PMID: 37000910 DOI: 10.1080/09205063.2023.2198389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Curcumin is one of the most important polyphenolic nutrients in pharmaceutical industries. Unfortunately, its poor solubility and bioavailability have hampered its clinical application. To improve curcumin solubility and bioavailability, a natural nanocarrier made from protein-polysaccharide conjugate has been developed. Following antisolvent precipitation method, zein (Z) nanoparticles coated with dextran sulphate (DS) have been fabricated as curcumin (C) nanocarrier (DSZCNPs). The physicochemical properties of the nanoconjugate were measured using different techniques. Morphologically, DSZCNPs appeared spherical and monodispersed in scanning electron microscope (SEM) and transmission electron microscope (TEM) images. Curcumin encapsulation efficiency was ≈ 96%. DSZCNPs size was 180 nm and the polydispersity index value (PDI) 0.28. Zeta potential for DSZCNPs was -28.5 mV. DSZCNPs showed stability either for shelf storage (100 days) or at different pHs. Furthermore, DSZCNPs protected zein nanoparticles degradation in gastric environment and achieved controlled curcumin release in intestinal environment. DSZCNPs greatly enhanced the antioxidant activity of curcumin as demonstrated by DPPH assay. DSZCNPs had significant results in the reduction of colony forming unit (CFU%) against the tested microbes when compared with free curcumin. Also, the anticancer activity of DSZCNPs and free curcumin against hepatocellular carcinoma cells (HepG2) were assessed by MTT assay. IC50 for DSZCNPs was 13 µg/ml compared to 50 µg/ml for free curcumin indicating the therapeutic impact of DSZCNPs over free curcumin.Based on the above results, the developed zein-dextran nanocomplex exhibited high stability and improved the efficacy and bioactivity of curcumin suggesting its potential utility as nanovehicle for the hydrophobic drug curcumin.
Collapse
Affiliation(s)
- N T S Albogamy
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Physics Department, University College-Taraba, Taif University, Turbah, Kingdom of Saudi Arabia
| | - Samia F Aboushoushah
- Medical Physics Program, Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - F Aljoud
- Regenerative Medicine Unit-KFMRC, King Abdulaziz University, Jeddah, Saudi Arabia
| | - H Organji
- Centre of Excellence in Desalination Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nihal S Elbialy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Shen J, Zhang J, Wu W, Banerjee P, Zhou S. Biocompatible Anisole-Nonlinear PEG Core-Shell Nanogels for High Loading Capacity, Excellent Stability, and Controlled Release of Curcumin. Gels 2023; 9:762. [PMID: 37754443 PMCID: PMC10529957 DOI: 10.3390/gels9090762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Curcumin, a nontoxic and cheap natural medicine, has high therapeutic efficacy for many diseases, including diabetes and cancers. Unfortunately, its exceedingly low water-solubility and rapid degradation in the body severely limit its bioavailability. In this work, we prepare a series of biocompatible poly(vinyl anisole)@nonlinear poly(ethylene glycol) (PVAS@PEG) core-shell nanogels with different PEG gel shell thickness to provide high water solubility, good stability, and controllable sustained release of curcumin. The PVAS nanogel core is designed to attract and store curcumin molecules for high drug loading capacity and the hydrophilic nonlinear PEG gel shell is designed to offer water dispersibility and thermo-responsive drug release. The nanogels prepared are monodispersed in a spherical shape with clear core-shell morphology. The size and shell thickness of the nanogels can be easily controlled by changing the core-shell precursor feeding ratios. The optimized PVAS@PEG nanogels display a high curcumin loading capacity of 38.0 wt%. The nanogels can stabilize curcumin from degradation at pH = 7.4 and release it in response to heat within the physiological temperature range. The nanogels can enter cells effectively and exhibit negligible cytotoxicity to both the B16F10 and HL-7702 cells at a concentration up to 2.3 mg/mL. Such designed PVAS@PEG nanogels have great potential to be used for efficient drug delivery.
Collapse
Affiliation(s)
- Jing Shen
- Department of Chemistry of The College of Staten Island and PhD Program in Chemistry of Graduate Center, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA; (J.S.); (J.Z.); (P.B.)
- Department of Chemistry, Yunnan Normal University, Kunming 650092, China
| | - Jiangtao Zhang
- Department of Chemistry of The College of Staten Island and PhD Program in Chemistry of Graduate Center, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA; (J.S.); (J.Z.); (P.B.)
| | - Weitai Wu
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
| | - Probal Banerjee
- Department of Chemistry of The College of Staten Island and PhD Program in Chemistry of Graduate Center, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA; (J.S.); (J.Z.); (P.B.)
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island and PhD Program in Chemistry of Graduate Center, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA; (J.S.); (J.Z.); (P.B.)
| |
Collapse
|
8
|
Tan M, Zhang X, Sun S, Cui G. Nanostructured steady-state nanocarriers for nutrients preservation and delivery. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:31-93. [PMID: 37722776 DOI: 10.1016/bs.afnr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food bioactives possess specific physiological benefits of preventing certain diet-related chronic diseases or maintain human health. However, the limitations of the bioactives are their poor stability, lower water solubility and unacceptable bioaccessibility. Structure damage or degradation is often found for the bioactives under certain environmental conditions like high temperature, strong light, extreme pH or high oxygen concentration during food processing, packaging, storage and absorption. Nanostructured steady-state nanocarriers have shown great potential in overcoming the drawbacks for food bioactives. Various delivery systems including solid form delivery system, liquid form delivery system and encapsulation technology have been developed. The embedded food nutrients can largely decrease the loss and degradation during food processing, packaging and storage. The design and application of stimulus and targeted delivery systems can improve the stability, bioavailability and efficacy of the food bioactives upon oral consumption due to enzymatic degradation in the gastrointestinal tract. The food nutrients encapsulated in the smart delivery system can be well protected against degradation during oral administration, thus improving the bioavailability and releazing controlled or targeted release for food nutrients. The encapsulated food bioactives show great potential in nutrition therapy for sub-health status and disease. Much effort is required to design and prepare more biocompatible nanostructured steady-state nanocarriers using food-grade protein or polysaccharides as wall materials, which can be used in food industry and maintain the human health.
Collapse
Affiliation(s)
- Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China.
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Shan Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| |
Collapse
|
9
|
Yang XY, Lu YF, Xu JX, Du YZ, Yu RS. Recent Advances in Well-Designed Therapeutic Nanosystems for the Pancreatic Ductal Adenocarcinoma Treatment Dilemma. Molecules 2023; 28:molecules28031506. [PMID: 36771172 PMCID: PMC9920782 DOI: 10.3390/molecules28031506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with an extremely poor prognosis and low survival rate. Due to its inconspicuous symptoms, PDAC is difficult to diagnose early. Most patients are diagnosed in the middle and late stages, losing the opportunity for surgery. Chemotherapy is the main treatment in clinical practice and improves the survival of patients to some extent. However, the improved prognosis is associated with higher side effects, and the overall prognosis is far from satisfactory. In addition to resistance to chemotherapy, PDAC is significantly resistant to targeted therapy and immunotherapy. The failure of multiple treatment modalities indicates great dilemmas in treating PDAC, including high molecular heterogeneity, high drug resistance, an immunosuppressive microenvironment, and a dense matrix. Nanomedicine shows great potential to overcome the therapeutic barriers of PDAC. Through the careful design and rational modification of nanomaterials, multifunctional intelligent nanosystems can be obtained. These nanosystems can adapt to the environment's needs and compensate for conventional treatments' shortcomings. This review is focused on recent advances in the use of well-designed nanosystems in different therapeutic modalities to overcome the PDAC treatment dilemma, including a variety of novel therapeutic modalities. Finally, these nanosystems' bottlenecks in treating PDAC and the prospect of future clinical translation are briefly discussed.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Yuan-Fei Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Jian-Xia Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou 310005, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| |
Collapse
|
10
|
Akbar MU, Akbar A, Saddozai UAK, Khan MIU, Zaheer M, Badar M. A multivariate metal–organic framework based pH-responsive dual-drug delivery system for chemotherapy and chemodynamic therapy. MATERIALS ADVANCES 2023; 4:5653-5667. [DOI: 10.1039/d3ma00389b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
By combining two different ligands and metals, MOFs can be fine-tuned for effective encapsulation and delivery of two anticancer drugs.
Collapse
Affiliation(s)
- Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, 29050, Pakistan
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, 54792, Pakistan
| | - Arslan Akbar
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, 54792, Pakistan
| | - Umair Ali Khan Saddozai
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Malik Ihsan Ullah Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54000, Pakistan
| | - Muhammad Zaheer
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, 54792, Pakistan
| | - Muhammad Badar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, 29050, Pakistan
| |
Collapse
|
11
|
Ahmad A, Prakash R, Khan MS, Altwaijry N, Asghar MN, Raza SS, Khan R. Nanoparticle-Mediated PRDX2 Inhibition for Specific Targeting of CHK2-Null Colorectal Cancer. ACS Biomater Sci Eng 2022; 8:5210-5220. [PMID: 36446128 DOI: 10.1021/acsbiomaterials.2c01073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic lethality is a pragmatic targeted cancer therapy approach in which cancer cells harboring genetic alterations are exploited for the specific killing of cancer cells. Earlier, we have established a synthetic lethal (SL) interaction between two genes that are CHK2 and PRDX2 in colorectal cancer (CRC) cells. The SL interaction between CHK2 and PRDX2 resulted in selective targeting of CHK2-defective CRC cells. N-Carbamoyl alanine (NCA) is a PRDX2 inhibitor and is a peptide-like organic compound, which degrades after oral administration in harsh gastric pH. To overcome the limitations of NCA, a chitosan-based nanocarrier was developed for the entrapment of NCA. In this study, we targeted the SL interaction between PRDX2 and CHK2 using NCA-loaded chitosan nanoparticles (NCA-Chit NPs) to selectively inhibit the CHK2-null HCT116 cells. NCA-Chit NPs were assessed for various physicochemical characterizations such as the hydrodynamic diameter (size), zeta potential, and polydispersity index using a Zetasizer. Additionally, morphological studies for the shape and size of NPs were confirmed by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Cellular uptake of NPs was confirmed using confocal microscopy, which exhibited that nanoparticles were able to internalize into the HCT116 cells. Blank Chit NPs were found to be cytocompatible as they did not exert any cytotoxic effects on hTERT, L929, and Caco-2 cells (intestinal epithelial cells). Importantly, NCA-Chit NPs were quite hemocompatible also. In the form of an NCA-chitosan nanoformulation, the efficacy was enhanced by about 8 times compared to free form of NCA towards selective killing of CHK2-null HCT116 cells as compared to HCT116 cells. The chitosan-based nanoformulation for NCA was developed to augment the efficacy of the NCA for enhanced cell death of colorectal cancer cells having CHK2 defects.
Collapse
Affiliation(s)
- Anas Ahmad
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali140306, Punjab, India
| | - Ravi Prakash
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow226003, Uttar Pradesh, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Riyadh Province11451, Saudi Arabia
| | - Nojood Altwaijry
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Riyadh Province11451, Saudi Arabia
| | - Muhammad Nadeem Asghar
- Department of Medical Biology, University of Québec at Trois-Rivieres, Trois-Rivieres, QuébecG9A 5H7, Canada
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow226003, Uttar Pradesh, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali140306, Punjab, India
| |
Collapse
|
12
|
pH-responsive sustained delivery of doxorubicin using aminated and PEGylated mesoporous silica nanoparticles leads to enhanced antitumor efficacy in pre-clinical orthotopic breast cancer model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Pion E, Karnosky J, Boscheck S, Wagner BJ, Schmidt KM, Brunner SM, Schlitt HJ, Aung T, Hackl C, Haerteis S. 3D In Vivo Models for Translational Research on Pancreatic Cancer: The Chorioallantoic Membrane (CAM) Model. Cancers (Basel) 2022; 14:cancers14153733. [PMID: 35954398 PMCID: PMC9367548 DOI: 10.3390/cancers14153733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The 5-year overall survival rate for all stages of pancreatic cancer is relatively low at about only 6%. As a result of this exceedingly poor prognosis, new research models are necessary to investigate this highly malignant cancer. One model that has been used extensively for a vast variety of different cancers is the chorioallantoic membrane (CAM) model. It is based on an exceptionally vascularized membrane that develops within fertilized chicken eggs and can be used for the grafting and analysis of tumor tissue. The aim of the study was to summarize already existing works on pancreatic ductal adenocarcinoma (PDAC) and the CAM model. The results were subdivided into different categories that include drug testing, angiogenesis, personalized medicine, modifications of the model, and further developments to help improve the unfavorable prognosis of this disease. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with adverse outcomes that have barely improved over the last decade. About half of all patients present with metastasis at the time of diagnosis, and the 5-year overall survival rate across all stages is only 6%. Innovative in vivo research models are necessary to combat this cancer and to discover novel treatment strategies. The chorioallantoic membrane (CAM) model represents one 3D in vivo methodology that has been used in a large number of studies on different cancer types for over a century. This model is based on a membrane formed within fertilized chicken eggs that contain a dense network of blood vessels. Because of its high cost-efficiency, simplicity, and versatility, the CAM model appears to be a highly valuable research tool in the pursuit of gaining more in-depth insights into PDAC. A summary of the current literature on the usage of the CAM model for the investigation of PDAC was conducted and subdivided into angiogenesis, drug testing, modifications, personalized medicine, and further developments. On this comprehensive basis, further research should be conducted on PDAC in order to improve the abysmal prognosis of this malignant disease.
Collapse
Affiliation(s)
- Eric Pion
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
| | - Julia Karnosky
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Sofie Boscheck
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
| | - Benedikt J. Wagner
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Katharina M. Schmidt
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Stefan M. Brunner
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Hans J. Schlitt
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, 94469 Deggendorf, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
- Correspondence:
| |
Collapse
|
14
|
Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev 2022; 51:5365-5451. [PMID: 35642539 PMCID: PMC9252171 DOI: 10.1039/d1cs00659b] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/12/2022]
Abstract
The present review details a chronological description of the events that took place during the development of mesoporous materials, their different synthetic routes and their use as drug delivery systems. The outstanding textural properties of these materials quickly inspired their translation to the nanoscale dimension leading to mesoporous silica nanoparticles (MSNs). The different aspects of introducing pharmaceutical agents into the pores of these nanocarriers, together with their possible biodistribution and clearance routes, would be described here. The development of smart nanocarriers that are able to release a high local concentration of the therapeutic cargo on-demand after the application of certain stimuli would be reviewed here, together with their ability to deliver the therapeutic cargo to precise locations in the body. The huge progress in the design and development of MSNs for biomedical applications, including the potential treatment of different diseases, during the last 20 years will be collated here, together with the required work that still needs to be done to achieve the clinical translation of these materials. This review was conceived to stand out from past reports since it aims to tell the story of the development of mesoporous materials and their use as drug delivery systems by some of the story makers, who could be considered to be among the pioneers in this area.
Collapse
Affiliation(s)
- María Vallet-Regí
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Daniel Lozano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Montserrat Colilla
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Miguel Manzano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
15
|
A pH-Gated Functionalized Hollow Mesoporous Silica Delivery System for Photodynamic Sterilization in Staphylococcus aureus Biofilm. MATERIALS 2022; 15:ma15082815. [PMID: 35454508 PMCID: PMC9031160 DOI: 10.3390/ma15082815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022]
Abstract
Multidrug-resistant bacteria are increasing, particularly those embedded in microbial biofilm. These bacteria account for most microbial infections in humans. Traditional antibiotic treatment has low efficiency in sterilization of biofilm-associated pathogens, and thus the development of new approaches is highly desired. In this study, amino-modified hollow mesoporous silica nanoparticles (AHMSN) were synthesized and used as the carrier to load natural photosensitizer curcumin (Cur). Then glutaraldehyde (GA) and polyethyleneimine (PEI) were used to seal the porous structure of AHMSN by the Schiff base reaction, forming positively charged AHMSN@GA@PEI@Cur. The Cur delivery system can smoothly diffuse into the negatively charged biofilm of Staphylococcus aureus (S. aureus). Then Cur can be released to the biofilm after the pH-gated cleavage of the Schiff base bond in the slightly acidic environment of the biofilm. After the release of the photosensitizer, the biofilm was irradiated by the blue LED light at a wavelength of 450 nm and a power of 37.4 mV/cm2 for 5 min. Compared with the control group, the number of viable bacteria in the biofilm was reduced by 98.20%. Therefore, the constructed pH-gated photosensitizer delivery system can efficiently target biofilm-associated pathogens and be used for photodynamic sterilization, without the production of antibiotic resistance.
Collapse
|
16
|
Slapak EJ, el Mandili M, Bijlsma MF, Spek CA. Mesoporous Silica Nanoparticle-Based Drug Delivery Systems for the Treatment of Pancreatic Cancer: A Systematic Literature Overview. Pharmaceutics 2022; 14:390. [PMID: 35214121 PMCID: PMC8876630 DOI: 10.3390/pharmaceutics14020390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cancer is a devastating disease with the worst outcome of any human cancer. Despite significant improvements in cancer treatment in general, little progress has been made in pancreatic cancer (PDAC), resulting in an overall 5-year survival rate of less than 10%. This dismal prognosis can be attributed to the limited clinical efficacy of systemic chemotherapy due to its high toxicity and consequent dose reductions. Targeted delivery of chemotherapeutic drugs to PDAC cells without affecting healthy non-tumor cells will largely reduce collateral toxicity leading to reduced morbidity and an increased number of PDAC patients eligible for chemotherapy treatment. To achieve targeted delivery in PDAC, several strategies have been explored over the last years, and especially the use of mesoporous silica nanoparticles (MSNs) seem an attractive approach. MSNs show high biocompatibility, are relatively easy to surface modify, and the porous structure of MSNs enables high drug-loading capacity. In the current systematic review, we explore the suitability of MSN-based targeted therapies in the setting of PDAC. We provide an extensive overview of MSN-formulations employed in preclinical PDAC models and conclude that MSN-based tumor-targeting strategies may indeed hold therapeutic potential for PDAC, although true clinical translation has lagged behind.
Collapse
Affiliation(s)
- Etienne J. Slapak
- Center of Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (M.e.M.); (C.A.S.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - Mouad el Mandili
- Center of Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (M.e.M.); (C.A.S.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - C. Arnold Spek
- Center of Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (M.e.M.); (C.A.S.)
| |
Collapse
|
17
|
Singla P, Garg S, McClements J, Jamieson O, Peeters M, Mahajan RK. Advances in the therapeutic delivery and applications of functionalized Pluronics: A critical review. Adv Colloid Interface Sci 2022; 299:102563. [PMID: 34826745 DOI: 10.1016/j.cis.2021.102563] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 11/13/2021] [Indexed: 12/22/2022]
Abstract
Pluronic (PEO-PPO-PEO) block copolymers can form nano-sized micelles with a structure composed of a hydrophobic PPO core and hydrophilic PEO shell layer. Pluronics are U.S. Food and Drug Administration approved polymers, which are widely used for solubilization of drugs and their delivery, gene/therapeutic delivery, diagnostics, and tissue engineering applications due to their non-ionic properties, non-toxicity, micelle forming ability, excellent biocompatibility and biodegradability. Although Pluronics have been employed as drug carrier systems for several decades, numerous issues such as rapid dissolution, shorter residence time in biological media, fast clearance and weak mechanical strength have hindered their efficacy. Pluronics have been functionalized with pH-sensitive, biological-responsive moieties, antibodies, aptamers, folic acid, drugs, different nanoparticles, and photo/thermo-responsive hydrogels. These functionalization strategies enable Pluronics to act as stimuli responsive and targeted drug delivery vehicles. Moreover, Pluronics have emerged in nano-emulsion formulations and have been utilized to improve the properties of cubosomes, dendrimers and nano-sheets, including their biocompatibility and aqueous solubility. Functionalization of Pluronics results in the significant improvement of target specificity, loading capacity, biocompatibility of nanoparticles and stimuli responsive hydrogels for the promising delivery of a range of drugs. Therefore, this review presents an overview of all advancements (from the last 15 years) in functionalized Pluronics, providing a valuable tool for industry and academia in order to optimize their use in drug or therapeutic delivery, in addition to several other biomedical applications.
Collapse
Affiliation(s)
- Pankaj Singla
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Saweta Garg
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Jake McClements
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Oliver Jamieson
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Marloes Peeters
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom.
| | - Rakesh Kumar Mahajan
- Department of Chemistry, UGC-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
18
|
Tabanelli R, Brogi S, Calderone V. Improving Curcumin Bioavailability: Current Strategies and Future Perspectives. Pharmaceutics 2021; 13:1715. [PMID: 34684008 PMCID: PMC8540263 DOI: 10.3390/pharmaceutics13101715] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Curcumin possesses a plethora of interesting pharmacological effects. Unfortunately, it is also characterized by problematic drug delivery and scarce bioavailability, representing the main problem related to the use of this compound. Poor absorption, fast metabolism, and rapid systemic clearance are the most important factors contributing to low curcumin levels in plasma and tissues. Accordingly, to overcome these issues, numerous strategies have been proposed and are investigated in this article. Due to advances in the drug delivery field, we describe here the most promising strategies for increasing curcumin bioavailability, including the use of adjuvant, complexed/encapsulated curcumin, specific curcumin formulations, and curcumin nanoparticles. We analyze current strategies, already available in the market, and the most advanced technologies that can offer a future perspective for effective curcumin formulations. We focus the attention on the effectiveness of curcumin-based formulations in clinical trials, providing a comprehensive summary. Clinical trial results, employing various delivery methods for curcumin, showed that improved bioavailability corresponds to increased therapeutic efficacy. Furthermore, advances in the field of nanoparticles hold great promise for developing curcumin-based complexes as effective therapeutic agents. Summarizing, suitable delivery methods for this polyphenol will ensure the possibility of using curcumin-derived formulations in clinical practice as preventive and disease-modifying therapeutics.
Collapse
Affiliation(s)
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, I-56126 Pisa, Italy; (R.T.); (V.C.)
| | | |
Collapse
|
19
|
Heinrich MA, Mostafa AMRH, Morton JP, Hawinkels LJAC, Prakash J. Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Adv Drug Deliv Rev 2021; 174:265-293. [PMID: 33895214 DOI: 10.1016/j.addr.2021.04.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive type of cancer with an overall survival rate of less than 7-8%, emphasizing the need for novel effective therapeutics against PDAC. However only a fraction of therapeutics which seemed promising in the laboratory environment will eventually reach the clinic. One of the main reasons behind this low success rate is the complex tumor microenvironment (TME) of PDAC, a highly fibrotic and dense stroma surrounding tumor cells, which supports tumor progression as well as increases the resistance against the treatment. In particular, the growing understanding of the PDAC TME points out a different challenge in the development of efficient therapeutics - a lack of biologically relevant in vitro and in vivo models that resemble the complexity and heterogeneity of PDAC observed in patients. The purpose and scope of this review is to provide an overview of the recent developments in different in vitro and in vivo models, which aim to recapitulate the complexity of PDAC in a laboratory environment, as well to describe how 3D in vitro models can be integrated into drug development pipelines that are already including sophisticated in vivo models. Hereby a special focus will be given on the complexity of in vivo models and the challenges in vitro models face to reach the same levels of complexity in a controllable manner. First, a brief introduction of novel developments in two dimensional (2D) models and ex vivo models is provided. Next, recent developments in three dimensional (3D) in vitro models are described ranging from spheroids, organoids, scaffold models, bioprinted models to organ-on-chip models including a discussion on advantages and limitations for each model. Furthermore, we will provide a detailed overview on the current PDAC in vivo models including chemically-induced models, syngeneic and xenogeneic models, highlighting hetero- and orthotopic, patient-derived tissues (PDX) models, and genetically engineered mouse models. Finally, we will provide a discussion on overall limitations of both, in vitro and in vivo models, and discuss necessary steps to overcome these limitations to reach an efficient drug development pipeline, as well as discuss possibilities to include novel in silico models in the process.
Collapse
Affiliation(s)
- Marcel A Heinrich
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Ahmed M R H Mostafa
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Jennifer P Morton
- Cancer Research UK, Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Rd, Glasgow G61 1QH, UK
| | - Lukas J A C Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Centre, PO-box 9600, 2300 RC Leiden, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| |
Collapse
|
20
|
Ahmad A, Ansari MM, Verma RK, Khan R. Aminocellulose-Grafted Polymeric Nanoparticles for Selective Targeting of CHEK2-Deficient Colorectal Cancer. ACS APPLIED BIO MATERIALS 2021; 4:5324-5335. [PMID: 35007013 DOI: 10.1021/acsabm.1c00437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report the formulation of aminocellulose-grafted polymeric nanoparticles containing LCS-1 for synthetic lethal targeting of checkpoint kinase 2 (CHEK2)-deficient HCT116 colon cancer (CRC) cells to surpass the limitations associated with the solubility of LCS-1 (a superoxide dismutase inhibitor). Aminocellulose (AC), a highly biocompatible and biodegradable hydrophilic polymer, was grafted over polycaprolactone (PCL), and a nanoprecipitation method was employed for formulating nanoparticles containing LCS-1. In this study, we exploited the synthetic lethal interaction between SOD1 and CHEK2 for the specific inhibition of CHEK2-deficient HCT116 CRC cells using LCS-1-loaded PCL-AC NPs. Furthermore, the effects of formation of protein corona on PCL-AC nanoparticles were also assessed in terms of size, cellular uptake, and cell viability. LCS-1-loaded NPs were evaluated for their size, zeta potential, and polydispersity index using a zetasizer, and their morphological characteristics were assessed by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy analyses. Cellular internalization using confocal microscopy exhibited that nanoparticles were uptaken by HCT116 cells. Also, nanoparticles were cytocompatible as they did not induce cytotoxicity in hTERT and HEK-293 cells. The LCS-1-loaded PCL-AC NPs were quite hemocompatible and were 240 times more selective in killing CHEK2-deficient cells as compared to CHEK2-proficient CRC cells. Moreover, PCL-AC NPs exhibited that the protein corona-coated nanoparticles were incubated in the human and fetal bovine sera as visualized by SDS-PAGE. A slight increment in hydrodynamic diameter was observed for corona-coated PCL-AC nanoparticles, and size increment was further confirmed by TEM. Corona-coated PCL-AC NPs also exhibited cellular uptake as demonstrated by flow cytometric analysis and did not cause cytotoxic effects on hTERT cells. The nanoformulation was developed to enhance therapeutic potential of the drug LCS-1 for enhanced lethality of colorectal cancer cells with CHEK2 deficiency.
Collapse
Affiliation(s)
- Anas Ahmad
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India.,Department of Pharmacology, Chandigarh College of Pharmacy, Sector 112, Sahibzada Ajit Singh Nagar, Punjab 140307, India
| | - Md Meraj Ansari
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Rehan Khan
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| |
Collapse
|
21
|
Li X, Zhang W, Lin J, Wu H, Yao Y, Zhang J, Yang C. T cell membrane cloaking tumor microenvironment-responsive nanoparticles with a smart "membrane escape mechanism" for enhanced immune-chemotherapy of melanoma. Biomater Sci 2021; 9:3453-3464. [PMID: 33949434 DOI: 10.1039/d1bm00331c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The application of combination immune-chemotherapy makes up for the limitation of monotherapy and achieves superior antitumor activity against cancer. However, combinational therapy is always restricted by poor tumor targeted drug delivery efficacy. Herein, novel T cell membrane cloaking tumor microenvironment-responsive nanoparticles (PBA modified T cell membrane cloaking hyaluronic acid (HA)-disulfide bond-vitamin E succinate/curcumin, shortened as RCM@T) were developed. T cell membrane cloaking not only serves as a protection shell for sufficient drug delivery but also acts as a programmed cell death-1(PD-1) "antibody" to selectively bind the PD-L1 of tumor cells. When RCM@T is intravenously administrated into the blood stream, it accumulates at tumor sites and responds to an acidic pH to achieve a "membrane escape effect" and expose the HA residues of RCM for tumor targeted drug delivery. RCM accumulates in the cytoplasm via CD44 receptor mediated endocytosis and intracellularly releases antitumor drug in the intracellular redox microenvironment for tumor chemotherapy. T cell membrane debris targets the PD-L1of tumor cells for tumor immunotherapy, which not only directly kills tumor cells, but also improves the CD8+ T cell level and facilitates effector cytokine release. Taken together, the as-constructed RCM@T creates a new way for the rational design of a drug delivery system via the combination of stimuli-responsive drug release, chemotherapeutical agent delivery and cell membrane based immune checkpoint blockade immunotherapy.
Collapse
Affiliation(s)
- Xiaofang Li
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Wen Zhang
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Jing Lin
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Hao Wu
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Yucen Yao
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Jiayi Zhang
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Chunrong Yang
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| |
Collapse
|
22
|
Kundu M, Majumder R, Das CK, Mandal M. Natural products based nanoformulations for cancer treatment: Current evolution in Indian research. Biomed Mater 2021; 16. [PMID: 33621207 DOI: 10.1088/1748-605x/abe8f2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
The use of medicinal plants is as ancient as human civilization. The development of phytochemistry and pharmacology facilitates the identification of natural bioactive compounds and their mechanisms of action, including against cancer. The efficacy and the safety of a bioactive compound depend on its optimal delivery to the target site. Most natural bioactive compounds (phenols, flavonoids, tannins, etc.) are unable to reach their target sites due to their low water solubility, less cellular absorption, and high molecular weight, leading to their failure into clinical translation. Therefore, many scientific studies are going on to overcome the drawbacks of natural products for clinical applications. Several studies in India, as well as worldwide, have proposed the development of natural products-based nanoformulations to increase their efficacy and safety profile for cancer therapy by improving the delivery of natural bioactive compounds to their target site. Therefore, we are trying to discuss the development of natural products-based nanoformulations in India to improve the efficacy and safety of natural bioactive compounds against cancer.
Collapse
Affiliation(s)
- Moumita Kundu
- Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, West Bengal, 721302, INDIA
| | - Ranabir Majumder
- Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, West Bengal, 721302, INDIA
| | - Chandan Kanta Das
- Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, West Bengal, 721302, INDIA
| | - Mahitosh Mandal
- SMST, Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, 721302, INDIA
| |
Collapse
|