1
|
Abstract
In order to improve bioavailability, stability, control release, and target delivery of active pharmaceutical ingredients (APIs), as well as to mask their bitter taste, to increase their efficacy, and to minimize their side effects, a variety of microencapsulation (including nanoencapsulation, particle size <100 nm) technologies have been widely used in the pharmaceutical industry. Commonly used microencapsulation technologies are emulsion, coacervation, extrusion, spray drying, freeze-drying, molecular inclusion, microbubbles and microsponge, fluidized bed coating, supercritical fluid encapsulation, electro spinning/spray, and polymerization. In this review, APIs are categorized by their molecular complexity: small APIs (compounds with low molecular weight, like Aspirin, Ibuprofen, and Cannabidiol), medium APIs (compounds with medium molecular weight like insulin, peptides, and nucleic acids), and living microorganisms (such as probiotics, bacteria, and bacteriophages). This article provides an overview of these microencapsulation technologies including their processes, matrix, and their recent applications in microencapsulation of APIs. Furthermore, the advantages and disadvantages of these common microencapsulation technologies in terms of improving the efficacy of APIs for pharmaceutical treatments are comprehensively analyzed. The objective is to summarize the most recent progresses on microencapsulation of APIs for enhancing their bioavailability, control release, target delivery, masking their bitter taste and stability, and thus increasing their efficacy and minimizing their side effects. At the end, future perspectives on microencapsulation for pharmaceutical applications are highlighted.
Collapse
Affiliation(s)
- Cuie Yan
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| | - Sang-Ryoung Kim
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| |
Collapse
|
2
|
Forenzo C, Larsen J. Complex Coacervates as a Promising Vehicle for mRNA Delivery: A Comprehensive Review of Recent Advances and Challenges. Mol Pharm 2023; 20:4387-4403. [PMID: 37561647 DOI: 10.1021/acs.molpharmaceut.3c00439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Messenger RNA (mRNA)-based therapies have gained significant attention, following the successful deployment of mRNA-based COVID-19 vaccines. Compared with traditional methods of genetic modification, mRNA-based therapies offer several advantages, including a lower risk of genetic mutations, temporary and controlled therapeutic gene expression, and a shorter production time, which facilitates rapid responses to emerging health challenges. Moreover, mRNA-based therapies have shown immense potential in treating a wide range of diseases including cancers, immune diseases, and neurological disorders. However, the current limitations of non-viral vectors for efficient and safe delivery of mRNA therapies, such as low encapsulation efficiency, potential toxicity, and limited stability, necessitate the exploration of novel strategies to overcome these challenges and fully realize the potential of mRNA-based therapeutics. Coacervate-based delivery systems have recently emerged as promising strategies for enhancing mRNA delivery. Coacervates, which are formed by the aggregation of two or more macromolecules, have shown great potential in delivering a wide range of therapeutics due to their ability to form a separated macromolecular-rich fluid phase in an aqueous environment. This phase separation enables the entrapment and protection of therapeutic agents from degradation as well as efficient cellular uptake and controlled release. Additionally, the natural affinity of coacervates for mRNA molecules presents an excellent opportunity for enhancing mRNA delivery to targeted cells and tissues, making coacervate-based delivery systems an attractive option for mRNA-based therapies. This review highlights the limitations of current strategies for mRNA delivery and the advantages of coacervate-based delivery systems to enable mRNA therapeutics. Coacervates protect mRNA from enzymatic degradation and enhance cellular uptake, leading to sustained and controlled gene expression. Despite their promising properties, the specific use of coacervates as mRNA delivery vehicles remains underexplored. This review aims to provide a comprehensive overview of coacervate-mediated delivery of mRNA, exploring the properties and applications of different coacervating agents as well as the challenges and optimization strategies involved in mRNA encapsulation, release, stability, and translation via coacervate-mediated delivery. Through a comprehensive analysis of recent advancements and recommended future directions, our review sheds light on the promising role of coacervate-mediated delivery for RNA therapeutics, highlighting its potential to enable groundbreaking applications in drug delivery and gene therapy.
Collapse
|
3
|
Abbasian M, Khayyatalimohammadi M. Ultrasound-assisted synthesis of MIL-88(Fe) conjugated starch-Fe 3O 4 nanocomposite: A safe antibacterial carrier for controlled release of tetracycline. Int J Biol Macromol 2023; 234:123665. [PMID: 36791936 DOI: 10.1016/j.ijbiomac.2023.123665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
A constructing antibiotic carrier with a sustained release profile is a promising method to stop long-term bacterial infection, which is of ideal interest in different biomedical fields. To end this, the present study aims to design a novel carrier based on the modification of biopolymeric starch for the rising possible interaction between carrier and antibiotic agent. We established an in-situ ultrasound-assisted method was applied to grow and create MIL-88(Fe) framework in the structure of magnetic polysaccharide (i.e., St/Fe3O4) synthesized by precipitation method resulting in St/Fe3O4/MIL-88(Fe) nanocomposite. It was loaded with a high amount of Tetracycline (TC) through its immersion into the TC aqueous solution. The release profile of TC-loaded St/Fe3O4/MIL-88(Fe) displays a lower initial burst release (about 26 % after 12 h) and followed by a controlled and sustained release (about 73 % up to 168 h) in the simulated physiological environment at pH 7.4. The in vitro cytotoxicity showed good cytocompatibility against Human skin fibroblast (HFF-1) cells. TC-loaded St/Fe3O4/MIL-88(Fe) showed higher antibacterial activity against both S. aureus and E. coli with the MIC value of 64 and 128 μg·mL-1, respectively.
Collapse
Affiliation(s)
- Mojtaba Abbasian
- Department of Chemical Engineering, Faculty of Engineering, University of Bonab, Bonab, Iran.
| | | |
Collapse
|
4
|
Herrera SE, Agazzi ML, Apuzzo E, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Polyelectrolyte-multivalent molecule complexes: physicochemical properties and applications. SOFT MATTER 2023; 19:2013-2041. [PMID: 36811333 DOI: 10.1039/d2sm01507b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The complexation of polyelectrolytes with other oppositely charged structures gives rise to a great variety of functional materials with potential applications in a wide spectrum of technological fields. Depending on the assembly conditions, polyelectrolyte complexes can acquire different macroscopic configurations such as dense precipitates, nanosized colloids and liquid coacervates. In the past 50 years, much progress has been achieved to understand the principles behind the phase separation induced by the interaction of two oppositely charged polyelectrolytes in aqueous solutions, especially for symmetric systems (systems in which both polyions have similar molecular weight and concentration). However, in recent years, the complexation of polyelectrolytes with alternative building blocks such as small charged molecules (multivalent inorganic species, oligopeptides, and oligoamines, among others) has gained attention in different areas. In this review, we discuss the physicochemical characteristics of the complexes formed by polyelectrolytes and multivalent small molecules, putting a special emphasis on their similarities with the well-known polycation-polyanion complexes. In addition, we analyze the potential of these complexes to act as versatile functional platforms in various technological fields, such as biomedicine and advanced materials engineering.
Collapse
Affiliation(s)
- Santiago E Herrera
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Maximiliano L Agazzi
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), (UNRC, CONICET), Ruta Nacional 36 KM 601, 5800 Río Cuarto, Argentina.
| | - Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - M Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| |
Collapse
|
5
|
Hatem WA, Lapitsky Y. Accelerating Payload Release from Complex Coacervates through Mechanical Stimulation. Polymers (Basel) 2023; 15:polym15030586. [PMID: 36771888 PMCID: PMC9919863 DOI: 10.3390/polym15030586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Complex coacervates formed through the association of charged polymers with oppositely charged species are often investigated for controlled release applications and can provide highly sustained (multi-day, -week or -month) release of both small-molecule and macromolecular actives. This release, however, can sometimes be too slow to deliver the active molecules in the doses needed to achieve the desired effect. Here, we explore how the slow release of small molecules from coacervate matrices can be accelerated through mechanical stimulation. Using coacervates formed through the association of poly(allylamine hydrochloride) (PAH) with pentavalent tripolyphosphate (TPP) ions and Rhodamine B dye as the model coacervate and payload, we demonstrate that slow payload release from complex coacervates can be accelerated severalfold through mechanical stimulation (akin to flavor release from a chewed piece of gum). The stimulation leading to this effect can be readily achieved through either perforation (with needles) or compression of the coacervates and, besides accelerating the release, can result in a deswelling of the coacervate phases. The mechanical activation effect evidently reflects the rupture and collapse of solvent-filled pores, which form due to osmotic swelling of the solute-charged coacervate pellets and is most pronounced in release media that favor swelling. This stimulation effect is therefore strong in deionized water (where the swelling is substantial) and only subtle and shorter-lived in phosphate buffered saline (where the PAH/TPP coacervate swelling is inhibited). Taken together, these findings suggest that mechanical activation could be useful in extending the complex coacervate matrix efficacy in highly sustained release applications where the slowly releasing coacervate-based sustained release vehicles undergo significant osmotic swelling.
Collapse
|
6
|
Balance of Macrophage Activation by a Complex Coacervate-Based Adhesive Drug Carrier Facilitates Diabetic Wound Healing. Antioxidants (Basel) 2022; 11:antiox11122351. [PMID: 36552559 PMCID: PMC9774176 DOI: 10.3390/antiox11122351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Uncontrolled and sustained inflammation disrupts the wound-healing process and produces excessive reactive oxygen species, resulting in chronic or impaired wound closure. Natural antioxidants such as plant-based extracts and natural polysaccharides have a long history in wound care. However, they are hard to apply to wound beds due to high levels of exudate or anatomical sites to which securing a dressing is difficult. Therefore, we developed a complex coacervate-based drug carrier with underwater adhesive properties that circumvents these challenges by enabling wet adhesion and controlling inflammatory responses. This resulted in significantly accelerated wound healing through balancing the pro- and anti-inflammatory responses in macrophages. In brief, we designed a complex coacervate-based drug carrier (ADC) comprising oligochitosan and inositol hexaphosphate to entrap and release antioxidant proanthocyanins (PA) in a sustained way. The results from in vitro experiments demonstrated that ADC is able to reduce LPS-stimulated pro-inflammatory responses in macrophages. The ability of ADC to reduce LPS-stimulated pro-inflammatory responses in macrophages is even more promising when ADC is encapsulated with PA (ADC-PA). Our results indicate that ADC-PA is able to polarize macrophages into an M2 tissue-healing phenotype via up-regulation of anti-inflammatory and resolution of inflammatory responses. Treatment with ADC-PA around the wound beds fine-tunes the balance between the numbers of inducible nitric oxide synthase-positive (iNOS+) and mannose receptor-negative (CD206-) M1 and iNOS-CD206+ M2 macrophages in the wound microenvironment compared to controls. Achieving such a balance between the numbers of iNOS+CD206- M1 and iNOS-CD206+ M2 macrophages in the wound microenvironment has led to significantly improved wound closure in mouse models of diabetes, which exhibit severe impairments in wound healing. Together, our results demonstrate for the first time the use of a complex coacervate-based drug delivery system to promote timely resolution of the inflammatory responses for diabetic wound healing by fine-tuning the functions of macrophages.
Collapse
|
7
|
Alam SS, Mather CB, Seo Y, Lapitsky Y. Poly(allylamine)/tripolyphosphate coacervates for encapsulation and long-term release of cetylpyridinium chloride. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Darvishi S, Javanbakht S, Heydari A, Kazeminava F, Gholizadeh P, Mahdipour M, Shaabani A. Ultrasound-assisted synthesis of MIL-88(Fe) coordinated to carboxymethyl cellulose fibers: A safe carrier for highly sustained release of tetracycline. Int J Biol Macromol 2021; 181:937-944. [PMID: 33878359 DOI: 10.1016/j.ijbiomac.2021.04.092] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 01/16/2023]
Abstract
For stopping long-time harmful bacterial infection, designing a drug carrier with a highly prolonged release profile is a promising approach that is of interest to different biomedical areas. The subject of this work is to synthesis a novel carrier system through coordination of MIL-88(Fe) to carboxymethyl cellulose (CMC) for enhancing interaction between drug and carrier. We established an ultrasound-assisted synthetic method for in situ synthesis of MIL-88(Fe) in the presence of CMC resulting in CMC/MIL-88(Fe) composite. The CMC/MIL-88(Fe) was loaded with a high amount of Tetracycline (TC) by immersion of carrier to the TC aqueous solution. The release profile in the simulated physiological conditions, pH 7.4, revealed a low initial burst release followed by a sustained and prolonged release over 384 h. The in vitro cytotoxicity of CMC/MIL-88(Fe) against Human skin fibroblast (HFF-1) cells was calculated by MTT assay and showed a good cytocompatibility. The antibacterial activity was found for TC-loaded CMC/MIL-88(Fe) toward both E. coli and S. aureus with MIC 64 mg·ml-1.
Collapse
Affiliation(s)
- Sima Darvishi
- Faculty of Chemistry, Khajeh Nasir Toosi University, Tehran, Iran
| | | | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia.
| | - Fahimeh Kazeminava
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|