1
|
Kiratitanaporn W, Guan J, Tang M, Xiang Y, Lu TY, Balayan A, Lao A, Berry DB, Chen S. 3D Printing of a Biomimetic Myotendinous Junction Assisted by Artificial Intelligence. Biomater Sci 2024; 12:6047-6062. [PMID: 39446075 DOI: 10.1039/d4bm00892h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The myotendinous junction (MTJ) facilitates force transmission between muscle and tendon to produce joint movement. The complex microarchitecture and regional mechanical heterogeneity of the myotendinous junction pose major challenges in creating this interface in vitro. Engineering this junction in vitro is challenging due to substantial fabrication difficulties in creating scaffolds with intricate microarchitecture and stiffness heterogeneity to mimic the native muscle-tendon interface. To address the current challenges in creating the MTJ in vitro, digital light processing (DLP)-based 3D printing was used to fabricate poly(glycerol sebacate)acrylate (PGSA)-based muscle-tendon scaffolds with physiologically informed microstructure and mechanical properties. Local mechanical properties in various regions of the scaffold were tuned by adjusting the exposure time and light intensity used during the continuous DLP-based 3D printing process to match the mechanical properties present in distinct regions of native muscle-tendon tissue using printing parameters defined by an artificial intelligence-trained algorithm. To evaluate how the presence of zonal stiffness regions can affect the phenotype of a 3D-printed MTJ in vitro model, three 3D-printed PGSA-based scaffold conditions were investigated: (1) a scaffold with muscle-informed mechanical properties in its entirety without zonal stiffness regions, (2) a scaffold with one end possessing native muscle stiffness and the other end possessing native tendon stiffness, and (3) a scaffold with three distinct regions whose stiffness values correspond to those of muscle on one end of the scaffold, MTJ in the middle junction of the scaffold, and tendon on the other end of the scaffold. The scaffold containing regional mechanical heterogeneity most similar to the native MTJ (condition 3) was found to enhance the expression of MTJ-related markers compared to those without the presence of zonal stiffness regions. Overall, the DLP-based 3D printing platform and biomaterial system developed in this study could serve as a useful tool for mimicking the complexity of the native MTJ, which possesses inherent geometric and mechanical heterogeneity.
Collapse
Affiliation(s)
- Wisarut Kiratitanaporn
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yi Xiang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ting-Yu Lu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Alis Balayan
- School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alison Lao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - David B Berry
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shaochen Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Pien N, Deroose N, Meeremans M, Perneel C, Popovici CŞ, Dubruel P, De Schauwer C, Van Vlierberghe S. Tailorable acrylate-endcapped urethane-based polymers for precision in digital light processing: Versatile solutions for biomedical applications. BIOMATERIALS ADVANCES 2024; 162:213923. [PMID: 38875803 DOI: 10.1016/j.bioadv.2024.213923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Bioengineering seeks to replicate biological tissues exploiting scaffolds often based on polymeric biomaterials. Digital light processing (DLP) has emerged as a potent technique to fabricate tissue engineering (TE) scaffolds. However, the scarcity of suitable biomaterials with desired physico-chemical properties along with processing capabilities limits DLP's potential. Herein, we introduce acrylate-endcapped urethane-based polymers (AUPs) for precise physico-chemical tuning while ensuring optimal computer-aided design/computer-aided manufacturing (CAD/CAM) mimicry. Varying the polymer backbone (i.e. poly(ethylene glycol) (PEG) versus poly(propylene glycol) (PPG)) and photo-crosslinkable endcap (i.e. di-acrylate versus hexa-acrylate), we synthesized a series of photo-crosslinkable materials labeled as UPEG2, UPEG6, UPPG2 and UPPG6. Comprehensive material characterization including physico-chemical and biological evaluations, was followed by a DLP processing parametric study for each material. The impact of the number of acrylate groups per polymer (2 to 6) on the physico-chemical properties was pronounced, as reflected by a reduced swelling, lower water contact angles, accelerated crosslinking kinetics, and increased Young's moduli upon increasing the acrylate content. Furthermore, the different polymer backbones also exerted a substantial effect on the properties, including the absence of crystallinity, remarkably reduced swelling behaviors, a slight reduction in Young's modulus, and slower crosslinking kinetics for UPPG vs UPEG. The mechanical characteristics of DLP-printed samples showcased the ability to tailor the materials' stiffness (ranging from 0.4 to 5.3 MPa) by varying endcap chemistry and/or backbone. The in vitro cell assays confirmed biocompatibility of the material as such and the DLP-printed discs. Furthermore, the structural integrity of 3D scaffolds was preserved both in dry and swollen state. By adjusting the backbone chemistry or acrylate content, the post-swelling dimensions could be customized towards the targeted application. This study showcases the potential of these materials offering tailorable properties to serve many biomedical applications such as cartilage TE.
Collapse
Affiliation(s)
- Nele Pien
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 Building S4, 9000 Ghent, Belgium; Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9280 Merelbeke, Belgium.
| | - Nicolas Deroose
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 Building S4, 9000 Ghent, Belgium
| | - Marguerite Meeremans
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 Building S4, 9000 Ghent, Belgium; Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9280 Merelbeke, Belgium
| | - Charlotte Perneel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 Building S4, 9000 Ghent, Belgium
| | - Cezar-Ştefan Popovici
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 Building S4, 9000 Ghent, Belgium; Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9280 Merelbeke, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 Building S4, 9000 Ghent, Belgium
| | - Catharina De Schauwer
- Veterinary Stem Cell Research Unit, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9280 Merelbeke, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 Building S4, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Ma W, Wright N, Wang Y. Norbornene Dicarboximide: A Green Alternative for Thiol-Norbornene Photopolymers. ACS Macro Lett 2024; 13:915-920. [PMID: 38991097 DOI: 10.1021/acsmacrolett.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Carbic anhydride is an underappreciated starting material for 3D-printable, non-hydrogel photopolymers. Compared with other norbornene precursors, carbic anhydride is cheaper and reactive via aminolysis. As a result, the generalized and efficient functionalization with carbic anhydride can increase the utilization of thiol-norbornene photopolymers. Here, we report carbic anhydride's catalyst-free condensation with two commodity polymers: amine-functionalized polypropylene glycol and polydimethylsiloxane. The reaction completes in 1 h, produces water as the only byproduct, and does not require purification. It is therefore affordable, facile, and green. Mixing the product with thiol cross-linkers and the appropriate photoadditives produces photopolymers that are printable via Digital Light Processing. The photopolymers exhibit tunable tensile properties and a functional surface by varying the polymer backbone and thiol stoichiometry. Moreover, the photopolymers are 3D-printed into true-to-scale human aorta models and porous scaffolds with high resolution. The simple yet versatile platform will benefit additive manufacturing of soft materials and beyond.
Collapse
Affiliation(s)
- Warrick Ma
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Nathaniel Wright
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, New York 14853-1801, United States
| | - Yadong Wang
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, New York 14853-1801, United States
| |
Collapse
|
4
|
Kiratitanaporn W, Guan J, Berry DB, Lao A, Chen S. Multimodal Three-Dimensional Printing for Micro-Modulation of Scaffold Stiffness Through Machine Learning. Tissue Eng Part A 2024; 30:280-292. [PMID: 37747804 DOI: 10.1089/ten.tea.2023.0193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The ability to precisely control a scaffold's microstructure and geometry with light-based three-dimensional (3D) printing has been widely demonstrated. However, the modulation of scaffold's mechanical properties through prescribed printing parameters is still underexplored. This study demonstrates a novel 3D-printing workflow to create a complex, elastomeric scaffold with precision-engineered stiffness control by utilizing machine learning. Various printing parameters, including the exposure time, light intensity, printing infill, laser pump current, and printing speed were modulated to print poly (glycerol sebacate) acrylate (PGSA) scaffolds with mechanical properties ranging from 49.3 ± 3.3 kPa to 2.8 ± 0.3 MPa. This enables flexibility in spatial stiffness modulation in addition to high-resolution scaffold fabrication. Then, a neural network-based machine learning model was developed and validated to optimize printing parameters to yield scaffolds with user-defined stiffness modulation for two different vat photopolymerization methods: a digital light processing (DLP)-based 3D printer was utilized to rapidly fabricate stiffness-modulated scaffolds with features on the hundreds of micron scale and a two-photon polymerization (2PP) 3D printer was utilized to print fine structures on the submicron scale. A novel 3D-printing workflow was designed to utilize both DLP-based and 2PP 3D printers to create multiscale scaffolds with precision-tuned stiffness control over both gross and fine geometric features. The described workflow can be used to fabricate scaffolds for a variety of tissue engineering applications, specifically for interfacial tissue engineering for which adjacent tissues possess heterogeneous mechanical properties (e.g., muscle-tendon).
Collapse
Affiliation(s)
- Wisarut Kiratitanaporn
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, USA
| | - David B Berry
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Alison Lao
- Department of NanoEngineering, University of California San Diego, La Jolla, California, USA
| | - Shaochen Chen
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Cheng X, Xu B, Lei B, Wang S. Opposite Mechanical Preference of Bone/Nerve Regeneration in 3D-Printed Bioelastomeric Scaffolds/Conduits Consistently Correlated with YAP-Mediated Stem Cell Osteo/Neuro-Genesis. Adv Healthc Mater 2024; 13:e2301158. [PMID: 38211963 DOI: 10.1002/adhm.202301158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/31/2023] [Indexed: 01/13/2024]
Abstract
To systematically unveil how substrate stiffness, a critical factor in directing cell fate through mechanotransduction, correlates with tissue regeneration, novel biodegradable and photo-curable poly(trimethylene carbonate) fumarates (PTMCFs) for fabricating elastomeric 2D substrates and 3D bone scaffolds/nerve conduits, are presented. These substrates and structures with adjustable stiffness serve as a unique platform to evaluate how this mechanical cue affects the fate of human umbilical cord mesenchymal stem cells (hMSCs) and hard/soft tissue regeneration in rat femur bone defect and sciatic nerve transection models; whilst, decoupling from topographical and chemical cues. In addition to a positive relationship between substrate stiffness (tensile modulus: 90-990 kPa) and hMSC adhesion, spreading, and proliferation mediated through Yes-associated protein (YAP), opposite mechanical preference is revealed in the osteogenesis and neurogenesis of hMSCs as they are significantly enhanced on the stiff and compliant substrates, respectively. In vivo tissue regeneration demonstrates the same trend: bone regeneration prefers the stiffer scaffolds; while, nerve regeneration prefers the more compliant conduits. Whole-transcriptome analysis further shows that upregulation of Rho GTPase activity and the downstream genes in the compliant group promote nerve repair, providing critical insight into the design strategies of biomaterials for stem cell regulation and hard/soft tissue regeneration through mechanotransduction.
Collapse
Affiliation(s)
- Xiaopeng Cheng
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bowen Xu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bingxi Lei
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shanfeng Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Ding X, Zhang Z, Kluka C, Asim S, Manuel J, Lee BP, Jiang J, Heiden PA, Heldt CL, Rizwan M. Pair of Functional Polyesters That Are Photo-Cross-Linkable and Electrospinnable to Engineer Elastomeric Scaffolds with Tunable Structure and Properties. ACS APPLIED BIO MATERIALS 2024; 7:863-878. [PMID: 38207114 PMCID: PMC10954299 DOI: 10.1021/acsabm.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A pair of alkyne- and thiol-functionalized polyesters are designed to engineer elastomeric scaffolds with a wide range of tunable material properties (e.g., thermal, degradation, and mechanical properties) for different tissues, given their different host responses, mechanics, and regenerative capacities. The two prepolymers are quickly photo-cross-linkable through thiol-yne click chemistry to form robust elastomers with small permanent deformations. The elastic moduli can be easily tuned between 0.96 ± 0.18 and 7.5 ± 2.0 MPa, and in vitro degradation is mediated from hours up to days by adjusting the prepolymer weight ratios. These elastomers bear free hydroxyl and thiol groups with a water contact angle of less than 85.6 ± 3.58 degrees, indicating a hydrophilic nature. The elastomer is compatible with NIH/3T3 fibroblast cells with cell viability reaching 88 ± 8.7% relative to the TCPS control at 48 h incubation. Differing from prior soft elastomers, a mixture of the two prepolymers without a carrying polymer is electrospinnable and UV-cross-linkable to fabricate elastic fibrous scaffolds for soft tissues. The designed prepolymer pair can thus ease the fabrication of elastic fibrous conduits, leading to potential use as a resorbable synthetic graft. The elastomers could find use in other tissue engineering applications as well.
Collapse
Affiliation(s)
- Xiaochu Ding
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Chemistry, Michigan Technological University, 609 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Christopher Kluka
- Department of Materials Science and Engineering, Michigan Technological University, 609 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - James Manuel
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Jingfeng Jiang
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Patricia A. Heiden
- Department of Chemistry, Michigan Technological University, 609 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Caryn L. Heldt
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Chemical Engineering, Michigan Technological University, 203 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| |
Collapse
|
7
|
Hevilla V, Sonseca Á, Fernández-García M. Straightforward Enzymatic Methacrylation of Poly(Glycerol Adipate) for Potential Applications as UV Curing Systems. Polymers (Basel) 2023; 15:3050. [PMID: 37514438 PMCID: PMC10383392 DOI: 10.3390/polym15143050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Enzymatic one-pot synthesis procedures in a one-step and two-step monomers addition were developed to obtain poly(glycerol adipate) macromers with methacrylate end-functional groups under the presence of 1 and 3 wt% of Candida antarctica lipase B (CALB). Glycerol, divinyl adipate, and vinyl methacrylate were enzymatically reacted (vinyl methacrylate was either present from the beginning in the monomers solution or slowly dropped after 6 h of reaction) in tetrahydrofuran (THF) at 40 °C over 48 h. Macromers with a methacrylate end groups fraction of ≈52% in a simple one-pot one-step procedure were obtained with molecular weights (Mn) of ≈7500-7900 g/mol. The obtained products under the one-pot one-step and two steps synthesis procedures carried out using 1 and 3 wt% of a CALB enzymatic catalyst were profusely characterized by NMR (1H and 13C), MALDI-TOF MS, and SEC. The methacrylate functional macromers obtained with the different procedures and 1 wt% of CALB were combined with an Irgacure® 369 initiator to undergo homopolymerization under UV irradiation for 10 and 30 min, in order to test their potential to obtain amorphous networks within minutes with similar properties to those typically obtained by complex acrylation/methacrylation procedures, which need multiple purification steps and harsh reagents such as acyl chlorides. To the best of our knowledge, this is the first time that it has been demonstrated that the obtention of methacrylate-functional predominantly linear macromers based on poly(glycerol adipate) is able to be UV crosslinked in a simple one-step procedure.
Collapse
Affiliation(s)
- Víctor Hevilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Águeda Sonseca
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| |
Collapse
|
8
|
Arif ZU, Khalid MY, Noroozi R, Hossain M, Shi HH, Tariq A, Ramakrishna S, Umer R. Additive manufacturing of sustainable biomaterials for biomedical applications. Asian J Pharm Sci 2023; 18:100812. [PMID: 37274921 PMCID: PMC10238852 DOI: 10.1016/j.ajps.2023.100812] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/30/2023] [Indexed: 06/07/2023] Open
Abstract
Biopolymers are promising environmentally benign materials applicable in multifarious applications. They are especially favorable in implantable biomedical devices thanks to their excellent unique properties, including bioactivity, renewability, bioresorbability, biocompatibility, biodegradability and hydrophilicity. Additive manufacturing (AM) is a flexible and intricate manufacturing technology, which is widely used to fabricate biopolymer-based customized products and structures for advanced healthcare systems. Three-dimensional (3D) printing of these sustainable materials is applied in functional clinical settings including wound dressing, drug delivery systems, medical implants and tissue engineering. The present review highlights recent advancements in different types of biopolymers, such as proteins and polysaccharides, which are employed to develop different biomedical products by using extrusion, vat polymerization, laser and inkjet 3D printing techniques in addition to normal bioprinting and four-dimensional (4D) bioprinting techniques. This review also incorporates the influence of nanoparticles on the biological and mechanical performances of 3D-printed tissue scaffolds. This work also addresses current challenges as well as future developments of environmentally friendly polymeric materials manufactured through the AM techniques. Ideally, there is a need for more focused research on the adequate blending of these biodegradable biopolymers for achieving useful results in targeted biomedical areas. We envision that biopolymer-based 3D-printed composites have the potential to revolutionize the biomedical sector in the near future.
Collapse
Affiliation(s)
- Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering (ZCCE), Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - HaoTian Harvey Shi
- Department of Mechanical & Materials Engineering, Western University, Ontario N6A 3K7, Canada
| | - Ali Tariq
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
9
|
Flores-Jiménez MS, Garcia-Gonzalez A, Fuentes-Aguilar RQ. Review on Porous Scaffolds Generation Process: A Tissue Engineering Approach. ACS APPLIED BIO MATERIALS 2023; 6:1-23. [PMID: 36599046 DOI: 10.1021/acsabm.2c00740] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Porous scaffolds have been widely explored for tissue regeneration and engineering in vitro three-dimensional models. In this review, a comprehensive literature analysis is conducted to identify the steps involved in their generation. The advantages and disadvantages of the available techniques are discussed, highlighting the importance of considering pore geometrical parameters such as curvature and size, and summarizing the requirements to generate the porous scaffold according to the desired application. This paper considers the available design tools, mathematical models, materials, fabrication techniques, cell seeding methodologies, assessment methods, and the status of pore scaffolds in clinical applications. This review compiles the relevant research in the field in the past years. The trends, challenges, and future research directions are discussed in the search for the generation of a porous scaffold with improved mechanical and biological properties that can be reproducible, viable for long-term studies, and closer to being used in the clinical field.
Collapse
Affiliation(s)
- Mariana S Flores-Jiménez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Alejandro Garcia-Gonzalez
- Escuela de Medicina, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Rita Q Fuentes-Aguilar
- Institute of Advanced Materials and Sustainable Manufacturing, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| |
Collapse
|
10
|
Yu L, Zeng G, Xu J, Han M, Wang Z, Li T, Long M, Wang L, Huang W, Wu Y. Development of Poly(Glycerol Sebacate) and Its Derivatives: A Review of the Progress over the past Two Decades. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2150774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liu Yu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guanjie Zeng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Xu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Mingying Han
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Zihan Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meng Long
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Boon ZH, Teo YY, Ang DTC. Recent development of biodegradable synthetic rubbers and bio-based rubbers using sustainable materials from biological sources. RSC Adv 2022; 12:34028-34052. [PMID: 36545000 PMCID: PMC9710532 DOI: 10.1039/d2ra06602e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Rubber is an amorphous hyperelastic polymer which is widely used in this modern era. Natural rubber is considered the ultimate rubber in terms of mechanical performance, but over the years, some limitations and challenges in natural rubber cultivation that could result in serious shortages in the supply chain had been identified. Since then, the search for alternatives including new natural and synthetic rubbers has been rather intense. The initiative to explore new sources of natural rubber which started during the 1940s has been reignited recently due to the increasing demand for natural rubber. The commercialization of natural rubber from the Parthenium argentatum and Taraxacum kok-saghyz species, with the cooperation from rubber product manufacturing companies, has somewhat improved the sustainability of the natural rubber supply chain. Meanwhile, the high demand for synthetic rubber drastically increases the rate of depletion of fossil fuels and amplifies the adverse environmental effect of overexploitation of fossil fuels. Moreover, rubber and plastic products disposal have been a major issue for many decades, causing environmental pollution and the expansion of landfills. Sustainable synthetic rubber products could be realized through the incorporation of materials from biological sources. They are renewable, low cost, and most importantly, biodegradable in nature. In this review, brief introduction to natural and synthetic rubbers, challenges in the rubber industry, alternatives to conventional natural rubber, and recent advances in biodegradable and/or bio-based synthetic rubbers are discussed. The effect of incorporating various types of biologically sourced materials in the synthetic rubbers are also elaborated in detail.
Collapse
Affiliation(s)
- Zhen Hern Boon
- Department of Chemistry, Universiti Malaya50603 Kuala LumpurMalaysia
| | - Yin Yin Teo
- Department of Chemistry, Universiti Malaya50603 Kuala LumpurMalaysia
| | | |
Collapse
|
12
|
Kiratitanaporn W, Berry DB, Mudla A, Fried T, Lao A, Yu C, Hao N, Ward SR, Chen S. 3D printing a biocompatible elastomer for modeling muscle regeneration after volumetric muscle loss. BIOMATERIALS ADVANCES 2022; 142:213171. [PMID: 36341746 DOI: 10.1016/j.bioadv.2022.213171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Volumetric muscle loss (VML) injuries due to trauma, tumor ablation, or other degenerative muscle diseases are debilitating and currently have limited options for self-repair. Advancements in 3D printing allow for the rapid fabrication of biocompatible scaffolds with designer patterns. However, the materials chosen are often stiff or brittle, which is not optimal for muscle tissue engineering. This study utilized a photopolymerizable biocompatible elastomer - poly (glycerol sebacate) acrylate (PGSA) - to develop an in vitro model of muscle regeneration and proliferation into an acellular scaffold after VML injury. Mechanical properties of the scaffold were tuned by controlling light intensity during the 3D printing process to match the specific tension of skeletal muscle. The effect of both geometric (channel sizes between 300 and 600 μm) and biologic (decellularized muscle extracellular matrix (dECM)) cues on muscle progenitor cell infiltration, proliferation, organization, and maturation was evaluated in vitro using a near-infrared fluorescent protein (iRFP) transfected cell line to assess cells in the 3D scaffold. Larger channel sizes and dECM coating were found to enhance cell proliferation and maturation, while no discernable effect on cell alignment was observed. In addition, a pilot experiment was carried out to evaluate the regenerative capacity of this scaffold in vivo after a VML injury. Overall, this platform demonstrates a simple model to study muscle progenitor recruitment and differentiation into acellular scaffolds after VML repair.
Collapse
|
13
|
Suo L, Xue Z, Wang P, Wu H, Chen Y, Shen J. Improvement of osteogenic properties using a 3D-printed graphene oxide/hyaluronic acid/chitosan composite scaffold. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221104072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oral and maxillofacial tumors, trauma and infections are the main causes of jaw defects, whose clinical treatment is very complicated. With the development of biological tissue engineering, many biological materials have been widely used in various fields of stomatology, and they play a very important role in the repair and replacement of maxillofacial bone defects. In this study, we intended to prepare a graphene oxide/hyaluronic acid/chitosan (GO/HA/CS) composite hydrogel with different mass ratios of GO: 0.1% (0.1% GO/HA/CS), 0.25% (0.25% GO/HA/CS), 0.5% (0.5% GO/HA/CS), and 1% (1% GO/HA/CS), prepare it into a multilayered and stable composite scaffold through 3D-printing technology, observe the surface morphology of the composite scaffold through scanning electron microscopy (SEM), and then test its physical and chemical properties, mechanical properties, water swelling rate, in vitro degradation and other material properties. Moreover, the biological performance of the GO/HA/CS composite scaffold was studied through experiments, such as cell morphology observation, cell adhesion, cell proliferation, and live-dead cell staining. The results showed that through chemical cross-linking and 3D-printing technology, a porous (pore size: 450–580 μm) and multilayered GO/HA/CS biological scaffold could be successfully constructed, and its surface was an interconnected microporous structure, and the porosity decreased (94%−40%) gradually with the increase of GO. Meanwhile, with the change in GO concentration, some mechanical properties of the scaffold could be improved, such as water swelling rate, degradation rate, and elastic modulus. In addition, the composite scaffold with the appropriate amount of GO had almost no cytotoxicity and could promote cell growth and proliferation, especially 0.25% GO/HA/CS composite scaffold. Consequently, the 0.25% GO/HA/CS composite scaffold had excellent biological material properties and good biocompatibility with osteoblasts, which may provide a new idea for the repair of jaw defects.
Collapse
Affiliation(s)
- Lai Suo
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zhijun Xue
- Department II of Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Puyu Wang
- Department II of Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Hongshan Wu
- School of Medicine, Nankai University, Tianjin, China
| | - Yao Chen
- Department II of Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jing Shen
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Wu Z, Jin K, Wang L, Fan Y. A Review: Optimization for Poly(glycerol sebacate) and Fabrication Techniques for Its Centered Scaffolds. Macromol Biosci 2021; 21:e2100022. [PMID: 34117837 DOI: 10.1002/mabi.202100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Poly(glycerol sebacate) (PGS), an emerging promising thermosetting polymer synthesized from sebacic acid and glycerol, has attracted considerable attention due to its elasticity, biocompatibility, and tunable biodegradation properties. But it also has some drawbacks such as harsh synthesis conditions, rapid degradation rates, and low stiffness. To overcome these challenges and optimize PGS performance, various modification methods and fabrication techniques for PGS-based scaffolds have been developed in recent years. Outlining the current modification approaches of PGS and summarizing the fabrication techniques for PGS-based scaffolds are of great importance to accelerate the development of new materials and enable them to be appropriately used in potential applications. Thus, this review comprehensively overviews PGS derivatives, PGS composites, PGS blends, processing for PGS-based scaffolds, and their related applications. It is envisioned that this review could instruct and inspire the design of the PGS-based materials and facilitate tissue engineering advances into clinical practice.
Collapse
Affiliation(s)
- Zebin Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Kaixiang Jin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,School of Medical Science and Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
15
|
Lang K, Sánchez-Leija RJ, Gross RA, Linhardt RJ. Review on the Impact of Polyols on the Properties of Bio-Based Polyesters. Polymers (Basel) 2020; 12:E2969. [PMID: 33322728 PMCID: PMC7764582 DOI: 10.3390/polym12122969] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Bio-based polyol polyesters are biodegradable elastomers having potential utility in soft tissue engineering. This class of polymers can serve a wide range of biomedical applications. Materials based on these polymers are inherently susceptible to degradation during the period of implantation. Factors that influence the physicochemical properties of polyol polyesters might be useful in achieving a balance between durability and biodegradability. The characterization of these polyol polyesters, together with recent comparative studies involving creative synthesis, mechanical testing, and degradation, have revealed many of their molecular-level differences. The impact of the polyol component on the properties of these bio-based polyesters and the optimal reaction conditions for their synthesis are only now beginning to be resolved. This review describes our current understanding of polyol polyester structural properties as well as a discussion of the more commonly used polyol monomers.
Collapse
Affiliation(s)
- Kening Lang
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.L.); (R.J.S.-L.)
| | - Regina J. Sánchez-Leija
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.L.); (R.J.S.-L.)
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA
| | - Richard A. Gross
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.L.); (R.J.S.-L.)
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.L.); (R.J.S.-L.)
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|