1
|
Zhang J, Yuan X, Li H, Yu L, Zhang Y, Pang K, Sun C, Liu Z, Li J, Ma L, Song J, Chen L. Novel porphyrin derivative containing cations as new photodynamic antimicrobial agent with high efficiency. RSC Adv 2024; 14:3122-3134. [PMID: 38249670 PMCID: PMC10797330 DOI: 10.1039/d3ra07743h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Bacterial infections from chronic wounds affect about 175 million people each year and are a significant clinical problem. Through the integration of photodynamic therapy (PDT) and chemotherapy, a new photosensitizer consisting of ammonium salt N,N-bis-(2-hydroxyethyl)-N-(6-(4-(10,15,20-trimesitylporphyrin-5-yl) phenoxy) hexane)-N-methanaminium bromide, TMP(+) was successfully synthesized with a total reaction yield of 10%. The novel photosensitizer consists of two parts, a porphyrin photosensitizer part and a quaternary ammonium salt part, to achieve the synergistic effect of photodynamic and chemical antibacterial activity. With the increase of TMP(+) concentration, the diameter of the PCT fiber membranes (POL/COL/TMP(+); POL, polycaprolactone; COL, collagen) gradually increased, which was caused by the charge of the quaternary ammonium salt. At the same time, the antibacterial properties were gradually improved. We finally selected the PCT 0.5% group for the antibacterial experiment, with excellent performance in fiber uniformity, hydrophobicity and biosafety. The antibacterial experiment showed that the modified porphyrin TMP(+) had a better antibacterial effect than others. In vivo chronic wound healing experiments proved that the antibacterial and anti-inflammatory effect of the PCTL group was the best, further confirmed by H&E histological analysis, immunofluorescence and immunohistochemistry mechanism experiments. This research lays the foundation for the manufacture of novel molecules that combine chemical and photodynamic strategies.
Collapse
Affiliation(s)
- Jiajing Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences Qingdao 266071 China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai 264003 China
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Xiaoqian Yuan
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Hongsen Li
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Liting Yu
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Yulong Zhang
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Keyi Pang
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Chaoyue Sun
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Zhongyang Liu
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Jie Li
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Liying Ma
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| | - Jinming Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences Qingdao 266071 China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai 264003 China
- School of Pharmacy, Binzhou Medical University Yantai 264003 China
| |
Collapse
|
2
|
Nguyen MTT, Dang LT, Van Pham H. Gold nanorods coated by molecularly imprinted polymer for sensitive and specific SERS detection of dyes. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
3
|
Guan Y, Fu S, Song W, Zhang X, Liu B, Zhang F, Chai F. Controllable synthesis of sea urchin-like Cu–Au bimetallic nanospheres and their utility as efficient catalyst for hydrogenation of 4-nitrophenol. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
4
|
Wang Y, Yin L, Wu J, Li N, He N, Zhao H, Li X, Lai X, Wu Q. A Photoelectrochemical Platform Based on Polyaniline-Modified Titanium Dioxide Facet Heterostructure. ACS APPLIED BIO MATERIALS 2022; 5:1297-1304. [PMID: 35262321 DOI: 10.1021/acsabm.1c01298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A photoelectrochemical (PEC) electrode for glucose detection was built based on polyaniline (PANI) modified titanium dioxide heterojunction (FH-TiO2) structures. Ultrathin titanium dioxide (TiO2) nanosheets are assembled onto rutile nanorods (TiO2 NRs). Experiments show that the main exposed faces of these nanosheets are (101) or (111) crystal planes. Proven by theoretical calculation, the bottom of the conduction band (CB) of (111) is 0.15 eV lower than the bottom of the conduction band of (101). Therefore, when the material is excited by light, photogenerated electrons are able to transfer from the conduction band of (101) to the conduction band of (111). PANI was introduced as a medium to effectively conduct photogenerated charges between glucose oxidase and titanium dioxide. A photoelectric detection electrode for glucose was fabricated by loading glucose oxidase onto PANI@FH-TiO2. This electrode showed excellent performance in 0.2-1.0 mM linear range with a sensitivity 15.63 μA mM-1 cm-2 and 1.0-15.0 mM linear range with a sensitivity of 1.42 μA mM-1 cm-2.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| | - Li Yin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| | - Jie Wu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| | - Nan Li
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Na He
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| | - Haixin Zhao
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Xiaotian Li
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Xiaoyong Lai
- Key Laboratory of Energy Resource and Chemical Engineering, State Key Laboratory Cultivation Base of Natural Gas Conversion, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Qiang Wu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, China
| |
Collapse
|
5
|
Zhang M, Han S, Niu X, Li H, Zhang D, Fan H, Wang K. Innovative Synthesis of PANI/Cu
2
O Nanocomposite and Its Antibacterial Properties**. ChemistrySelect 2021. [DOI: 10.1002/slct.202103165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mengmeng Zhang
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Sha Han
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Xiaohui Niu
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Hongxia Li
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Deyi Zhang
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
| | - Haiyan Fan
- Chemistry Department Nazarbayev University Astana 010000 Kazakhstan
| | - Kunjie Wang
- School of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province Lanzhou 730050 China
| |
Collapse
|
6
|
Thi Dang L, Le Nguyen H, Van Pham H, Nguyen MTT. Shell thickness-controlled synthesis of Au@Ag core-shell nanorods structure for contaminants sensing by SERS. NANOTECHNOLOGY 2021; 33:075704. [PMID: 34425570 DOI: 10.1088/1361-6528/ac201a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
The accessibility of contaminants detection methods is urgently required for environmental and food safety control. In this report, we developed the Au@Ag core-shell nanorod structures for contaminants sensing by surface-enhanced Raman spectroscopy (SERS). The silver shell thickness and the corresponding plasmon wavelength of Au@Ag core-shell nanorods were tuned by changing the coating time and the silver precursor amount. Moreover, these structures exhibit ultra-sensitive detection ability for Nile blue A dye and Fenobucarb pesticide sensing by SERS. Interestingly, the highest Raman enhancement factor is obtained for the Au@Ag core-shell sample with a minimal silver shell thickness leaded by the optimal enhancement of the electromagnetic field of bimetallic structures. Hence, our report demonstrates that the combination of unique features of two plasmonic metals into core-shell structures promises potential applicability in SERS-based analysis.
Collapse
Affiliation(s)
- Lan Thi Dang
- School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam
| | - Huy Le Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam
| | - Hai Van Pham
- Faculty of Physics, Hanoi National University of Education, 136 Xuan Thuy Street, Hanoi, Vietnam
| | - Mai Thi Tuyet Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam
| |
Collapse
|