1
|
Markowska-Szczupak A, Paszkiewicz O, Yoshiiri K, Wang K, Kowalska E. Can photocatalysis help in the fight against COVID-19 pandemic? CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2023; 40:100769. [PMID: 36846296 PMCID: PMC9942773 DOI: 10.1016/j.cogsc.2023.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Mould fungi are serious threats to humans and animals (allergen) and might be the main cause of COVID-19-associated pulmonary aspergillosis. The common methods of disinfection are not highly effective against fungi due to the high resistance of fungal spores. Recently, photocatalysis has attracted significant attention towards antimicrobial action. Outstanding properties of titania photocatalysts have already been used in many areas, e.g., for building materials, air conditioner filters, and air purifiers. Here, the efficiency of photocatalytic methods to remove fungi and bacteria (risk factors for Severe Acute Respiratory Syndrome Coronavirus 2 co-infection) is presented. Based on the relevant literature and own experience, there is no doubt that photocatalysis might help in the fight against microorganisms, and thus prevent the severity of COVID-19 pandemic.
Collapse
Affiliation(s)
- Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| | - Kenta Yoshiiri
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, N10, W5, 060-0810 Sapporo, Japan
| | - Kunlei Wang
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
| | - Ewa Kowalska
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, N10, W5, 060-0810 Sapporo, Japan
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
2
|
Valinton JAA, Kurniawan A, Jhang RH, Pangilinan CR, Lee CH, Chen CH. Invisible Bactericidal Coatings on Generic Surfaces through a Convenient Hand Spray. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14909-14917. [PMID: 36472118 DOI: 10.1021/acs.langmuir.2c02604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Robust antimicrobial coatings featuring high transparency, strong bactericidal activity, and an easy application procedure on generic surfaces can be widely accepted by the public to prevent pandemics. In this work, we demonstrated the hand-sprayer-based approach to deposit complex oxide coatings composed of Co-Mn-Cu-Zn-Ag on screen protectors of smartphones through acidic redox-assisted deposition (ARD). The as-obtained coatings possess high transparency (99.74% transmittance at 550 nm) and long-lasting durability against swiping (for 135 days of average use) or wet cleaning (for a routine of 3 times/day for 33 days). The spray coating enabling 3.14% Escherichia coli viability can further be reduced to 0.21% through a consistent elemental composition achieved via the immersion method. The high intake of Cu2+ in the coating is majorly responsible for the bactericidal activity, and the presence of Ag+ and Zn2+ is necessary to achieve almost complete eradication. The success of extending the bactericidal coatings on other typical hand-touched surfaces (e.g., stainless steel railings, rubber handrails, and plastic switches) in public areas has been demonstrated.
Collapse
Affiliation(s)
| | - Alfin Kurniawan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Ren-Huai Jhang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Christian R Pangilinan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Chun-Hu Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| |
Collapse
|