1
|
Brito J, Moon J, Hlushko R, Aliakseyeu A, Andrianov AK, Sukhishvili SA. Engineering Degradation Rate of Polyphosphazene-Based Layer-by-Layer Polymer Coatings. J Funct Biomater 2024; 15:26. [PMID: 38391879 PMCID: PMC10889497 DOI: 10.3390/jfb15020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024] Open
Abstract
Degradable layer-by-layer (LbL) polymeric coatings have distinct advantages over traditional biomedical coatings due to their precision of assembly, versatile inclusion of bioactive molecules, and conformality to the complex architectures of implantable devices. However, controlling the degradation rate while achieving biocompatibility has remained a challenge. This work employs polyphosphazenes as promising candidates for film assembly due to their inherent biocompatibility, tunability of chemical composition, and the buffering capability of degradation products. The degradation of pyrrolidone-functionalized polyphosphazenes was monitored in solution, complexes and LbL coatings (with tannic acid), providing the first to our knowledge comparison of solution-state degradation to solid-state LbL degradation. In all cases, the rate of degradation accelerated in acidic conditions. Importantly, the tunability of the degradation rate of polyphosphazene-based LbL films was achieved by varying film assembly conditions. Specifically, by slightly increasing the ionization of tannic acid (near neutral pH), we introduce electrostatic "defects" to the hydrogen-bonded pairs that accelerate film degradation. Finally, we show that replacing the pyrrolidone side group with a carboxylic acid moiety greatly reduces the degradation rate of the LbL coatings. In practical applications, these coatings have the versatility to serve as biocompatible platforms for various biomedical applications and controlled release systems.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Junho Moon
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Raman Hlushko
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Aliaksei Aliakseyeu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77840, USA
| |
Collapse
|
2
|
Tagad HD, Brito J, Marin A, Buckley C, Wang H, Sun J, Sukhishvili SA, Wang H, Andrianov AK. 4-Methylumbelliferone-Functionalized Polyphosphazene and Its Assembly into Biocompatible Fluorinated Nanocoatings with Selective Antiproliferative Activity. Biomacromolecules 2023; 24:2278-2290. [PMID: 37071718 DOI: 10.1021/acs.biomac.3c00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Advanced multifunctional biomaterials are increasingly relying on clinically dictated patterns of selectivity against various biological targets. Integration of these frequently conflicting features into a single material surface may be best achieved by combining various complementary methodologies. Herein, a drug with a broad spectrum of activity, i.e., 4-methylumbelliferone (4-MU), is synthetically multimerized into water-soluble anionic macromolecules with the polyphosphazene backbone. The polymer structure, composition, and solution behavior are studied by 1H and 31P NMR spectroscopy, size-exclusion chromatography, dynamic light scattering, and UV and fluorescence spectrophotometry. To take advantage of the clinically proven hemocompatibility of fluorophosphazene surfaces, the drug-bearing macromolecule was then nanoassembled onto the surface of selected substrates in an aqueous solution with fluorinated polyphosphazene of the opposite charge using the layer-by-layer (LbL) technique. Nanostructured 4-MU-functionalized fluoro-coatings exhibited a strong antiproliferative effect on vascular smooth muscle cells (VSMCs) and fibroblasts with no cytotoxicity against endothelial cells. This selectivity pattern potentially provides the opportunity for highly desirable fast tissue healing while preventing the overgrowth of VSMCs and fibrosis. Taken together with the established in vitro hemocompatibility and anticoagulant activity, 4-MU-functionalized fluoro-coatings demonstrate potential for applications as restenosis-resistant coronary stents and artificial joints.
Collapse
Affiliation(s)
- Harichandra D Tagad
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Christian Buckley
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Haoyu Wang
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jingyu Sun
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Hongjun Wang
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| |
Collapse
|
3
|
Skin Vaccination with Ebola Virus Glycoprotein Using a Polyphosphazene-Based Microneedle Patch Protects Mice against Lethal Challenge. J Funct Biomater 2022; 14:jfb14010016. [PMID: 36662063 PMCID: PMC9860647 DOI: 10.3390/jfb14010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Ebolavirus (EBOV) infection in humans is a severe and often fatal disease, which demands effective interventional strategies for its prevention and treatment. The available vaccines, which are authorized under exceptional circumstances, use viral vector platforms and have serious disadvantages, such as difficulties in adapting to new virus variants, reliance on cold chain supply networks, and administration by hypodermic injection. Microneedle (MN) patches, which are made of an array of micron-scale, solid needles that painlessly penetrate into the upper layers of the skin and dissolve to deliver vaccines intradermally, simplify vaccination and can thereby increase vaccine access, especially in resource-constrained or emergency settings. The present study describes a novel MN technology, which combines EBOV glycoprotein (GP) antigen with a polyphosphazene-based immunoadjuvant and vaccine delivery system (poly[di(carboxylatophenoxy)phosphazene], PCPP). The protein-stabilizing effect of PCPP in the microfabrication process enabled preparation of a dissolvable EBOV GP MN patch vaccine with superior antigenicity compared to a non-polyphosphazene polymer-based analog. Intradermal immunization of mice with polyphosphazene-based MN patches induced strong, long-lasting antibody responses against EBOV GP, which was comparable to intramuscular injection. Moreover, mice vaccinated with the MN patches were completely protected against a lethal challenge using mouse-adapted EBOV and had no histologic lesions associated with ebolavirus disease.
Collapse
|
4
|
Casella G, Carlotto S, Lanero F, Mozzon M, Sgarbossa P, Bertani R. Cyclo- and Polyphosphazenes for Biomedical Applications. Molecules 2022; 27:8117. [PMID: 36500209 PMCID: PMC9736570 DOI: 10.3390/molecules27238117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclic and polyphosphazenes are extremely interesting and versatile substrates characterized by the presence of -P=N- repeating units. The chlorine atoms on the P atoms in the starting materials can be easily substituted with a variety of organic substituents, thus giving rise to a huge number of new materials for industrial applications. Their properties can be designed considering the number of repetitive units and the nature of the substituent groups, opening up to a number of peculiar properties, including the ability to give rise to supramolecular arrangements. We focused our attention on the extensive scientific literature concerning their biomedical applications: as antimicrobial agents in drug delivery, as immunoadjuvants in tissue engineering, in innovative anticancer therapies, and treatments for cardiovascular diseases. The promising perspectives for their biomedical use rise from the opportunity to combine the benefits of the inorganic backbone and the wide variety of organic side groups that can lead to the formation of nanoparticles, polymersomes, or scaffolds for cell proliferation. In this review, some aspects of the preparation of phosphazene-based systems and their characterization, together with some of the most relevant chemical strategies to obtain biomaterials, have been described.
Collapse
Affiliation(s)
- Girolamo Casella
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
| | - Silvia Carlotto
- Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (CNR), c/o Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Francesco Lanero
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mirto Mozzon
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Roberta Bertani
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
5
|
Brito J, Andrianov AK, Sukhishvili SA. Factors Controlling Degradation of Biologically Relevant Synthetic Polymers in Solution and Solid State. ACS APPLIED BIO MATERIALS 2022; 5:5057-5076. [PMID: 36206552 DOI: 10.1021/acsabm.2c00694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The field of biodegradable synthetic polymers, which is central for regenerative engineering and drug delivery applications, encompasses a multitude of hydrolytically sensitive macromolecular structures and diverse processing approaches. The ideal degradation behavior for a specific life science application must comply with a set of requirements, which include a clinically relevant kinetic profile, adequate biocompatibility, benign degradation products, and controlled structural evolution. Although significant advances have been made in tailoring materials characteristics to satisfy these requirements, the impacts of autocatalytic reactions and microenvironments are often overlooked resulting in uncontrollable and unpredictable outcomes. Therefore, roles of surface versus bulk erosion, in situ microenvironment, and autocatalytic mechanisms should be understood to enable rational design of degradable systems. In an attempt to individually evaluate the physical state and form factors influencing autocatalytic hydrolysis of degradable polymers, this Review follows a hierarchical analysis that starts with hydrolytic degradation of water-soluble polymers before building up to 2D-like materials, such as ultrathin coatings and capsules, and then to solid-state degradation. We argue that chemical reactivity largely governs solution degradation while diffusivity and geometry control the degradation of bulk materials, with thin "2D" materials remaining largely unexplored. Following this classification, this Review explores techniques to analyze degradation in vitro and in vivo and summarizes recent advances toward understanding degradation behavior for traditional and innovative polymer systems. Finally, we highlight challenges encountered in analytical methodology and standardization of results and provide perspective on the future trends in the development of biodegradable polymers.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland20850, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas77843, United States
| |
Collapse
|
6
|
Brito J, Asawa K, Marin A, Andrianov AK, Choi CH, Sukhishvili SA. Hierarchically Structured, All-Aqueous-Coated Hydrophobic Surfaces with pH-Selective Droplet Transfer Capability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26225-26237. [PMID: 35611942 DOI: 10.1021/acsami.2c04499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Often inspired by nature, techniques for precise droplet manipulation have found applications in microfluidics, microreactors, and water harvesting. However, a widely applicable strategy for surface modification combining simultaneous hydrophobicity and pH-sensitivity has not yet been achieved by employing environmentally friendly assembly conditions. The introduction of pH-responsive groups to an otherwise fluorinated polyphosphazene (PPZ) unlocks pH-selective droplet capture and transfer. Here, an all-aqueous layer-by-layer (LbL) deposition of polyelectrolytes is used to create unique hydrophobic coatings, endowing surfaces with the ability to sense environmental pH. The high hydrophobicity of these coatings (ultimately reaching a contact angle >120° on flat surfaces) is enabled by the formation of hydrophobic nanoscale domains and controllable by the degree of fluorination of PPZs, polyamine-binding partners, deposition pH, and coating thickness. Inspired by the hierarchical structure of rose petals, these versatile coatings reach a contact angle >150° when deposited on structured surfaces while introducing a tunable adhesivity that enables precise droplet manipulation. The films exhibited a strongly pronounced parahydrophobic rose petal behavior characterized through the contact angle hysteresis. Depositing as few as five bilayers (∼25 nm) on microstructured rather than smooth substrates resulted in superhydrophobicity with water contact angles >150° and the attenuation of the contact angle hysteresis, enabling highly controlled transfer of aqueous droplets. The pH-selective droplet transfer was achieved between surfaces with either the same microstructure and LbL film building blocks, which were assembled at different pH, or between surfaces with different microstructures coated with identical films. The demonstrated capability of these hydrophobic LbL films to endow surfaces with controlled hydrophobicity through adsorption from aqueous solutions and control the adhesion and transfer of water droplets between surfaces can be used in droplet-based microfluidics applications and water collection/harvesting.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kaustubh Asawa
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Chang-Hwan Choi
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|