1
|
Xia W, Shan J, Lutsenko V, Cheng Z, Liu Y, Xu J, Yu S, Peng Z, Yuan H, Hu W. Inactivation of antibiotic resistant bacteria by ruthenium-doped carbon dots capable of photodynamic generation of intracellular and extracellular reactive oxygen species. BIOMATERIALS ADVANCES 2025; 176:214344. [PMID: 40381386 DOI: 10.1016/j.bioadv.2025.214344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Wound infections caused by methicillin-resistant Staphylococcus aureus (MRSA) present a significant challenge to wound healing. This has motivated the development of novel antibiotic-free agents. In this study, ruthenium-doped carbon dots (Ru-CDs) with photodynamic antibacterial activity were synthesized to treat MRSA-infected skin wounds. The Ru-CDs were prepared via a hydrothermal method using Ru-Aphen as the nitrogen source and citric acid as the carbon source, resulting in uniform spherical nanoparticles with an average size of 2.7 ± 0.8 nm. Singlet oxygen generation was observed when the Ru-CDs were exposed to light. In vitro experiments showed concentration- and light-dependent antibacterial activity of the Ru-CDs against MRSA, with 99.9 % bacterial reduction when treated with 100 μg/mL Ru-CDs under light for 10 min. A significant level of intracellular ROS was observed, and microscopy confirmed bacterial membrane disruption. Biocompatibility tests showed no significant toxicity, and in vivo studies on rabbit wound models demonstrated effective antibacterial activity under light conditions and enhanced wound healing compared to controls. The results collectively highlight the potential of Ru-CDs as an antibiotic-free agent for treating antibiotic resistant bacterial infections through photodynamic generation of extracellular ROS and induction of intracellular ROS.
Collapse
Affiliation(s)
- Weibo Xia
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Jia Shan
- Department of Radiation Physics and Technology, Dezhou Second People's Hospital, Dezhou 253000, China
| | - Vladyslav Lutsenko
- Intelligent Manufacturing College, Wenzhou Polytechnic, Wenzhou 325000, China
| | - Zhang Cheng
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Yu Liu
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States
| | - Jinjia Xu
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121, United States
| | - Shiqiang Yu
- Intelligent Manufacturing College, Wenzhou Polytechnic, Wenzhou 325000, China; Zhejiang Liqiang Packaging Technology Co., LTD, Wenzhou 325088, China
| | - Zheng Peng
- Department of Radiation Oncology, The Quzhou Affiliated Hospital of Wenzhou Medical University, People's Hospital of Quzhou, Quzhou 32400, China.
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, United States.
| | - Wenfei Hu
- Intelligent Manufacturing College, Wenzhou Polytechnic, Wenzhou 325000, China.
| |
Collapse
|
2
|
Wang L, Song K, Jiang C, Liu S, Huang S, Yang H, Li X, Zhao F. Metal-Coordinated Polydopamine Structures for Tumor Imaging and Therapy. Adv Healthc Mater 2024; 13:e2401451. [PMID: 39021319 DOI: 10.1002/adhm.202401451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Indexed: 07/20/2024]
Abstract
Meticulously engineered nanomaterials achieve significant advances in the diagnosis and therapy of solid tumors by improving tumor delivery efficiency; and thereby, enhancing imaging and therapeutic efficacy. Currently, polydopamine (PDA) attracts widespread attention because of its biocompatibility, simplicity of preparation, abundant surface groups, and high photothermal conversion efficiency, which can be applied in drug delivery, photothermal therapy, theranostics, and other nanomedicine fields. Inspired by PDA structures that are rich in catechol and amino functional groups that can coordinate with various metal ions, which have charming qualities and characteristics, metal-coordinated PDA structures are exploited for tumor theranostics, but are not thoroughly summarized. Herein, this review summarizes the recent progress in the fabrication of metal-coordinated PDA structures and their availabilities in tumor imaging and therapy, with further in-depth discussion of the challenges and future perspectives of metal-coordinated PDA structures, with the aim that this systematic review can promote interdisciplinary intersections and provide inspiration for the further growth and clinical translation of PDA materials.
Collapse
Affiliation(s)
- Lihua Wang
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Kaiyue Song
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Shanping Liu
- Library of Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Huang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310003, China
| | - Xianglong Li
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Feng Zhao
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
3
|
Song Y, Tan KB, Zhou SF, Zhan G. Biocompatible Copper-Based Nanocomposites for Combined Cancer Therapy. ACS Biomater Sci Eng 2024; 10:3673-3692. [PMID: 38717176 DOI: 10.1021/acsbiomaterials.4c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Copper (Cu) and Cu-based nanomaterials have received tremendous attention in recent years because of their unique physicochemical properties and good biocompatibility in the treatment of various diseases, especially cancer. To date, researchers have designed and fabricated a variety of integrated Cu-based nanocomplexes with distinctive nanostructures and applied them in cancer therapy, mainly including chemotherapy, radiotherapy (RT), photothermal therapy (PTT), chemodynamic therapy (CDT), photodynamic therapy (PDT), cuproptosis-mediated therapy, etc. Due to the limited effect of a single treatment method, the development of composite diagnostic nanosystems that integrate chemotherapy, PTT, CDT, PDT, and other treatments is of great significance and offers great potential for the development of the next generation of anticancer nanomedicines. In view of the rapid development of Cu-based nanocomplexes in the field of cancer therapy, this review focuses on the current state of research on Cu-based nanomaterials, followed by a discussion of Cu-based nanocomplexes for combined cancer therapy. Moreover, the current challenges and future prospects of Cu-based nanocomplexes in clinical translation are proposed to provide some insights into the design of integrated Cu-based nanotherapeutic platforms.
Collapse
Affiliation(s)
- Yibo Song
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen, 361021 Fujian, P. R. China
| | - Kok Bing Tan
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen, 361021 Fujian, P. R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen, 361021 Fujian, P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Academy of Advanced Carbon Conversion Technology, Huaqiao University, 668 Jimei Avenue, Xiamen, 361021 Fujian, P. R. China
| |
Collapse
|
4
|
Zhou M, Wang Y, Xia Y, Li Y, Bao J, Zhang Y, Cheng J, Shi Y. MRI-guided cell membrane-camouflaged bimetallic coordination nanoplatform for combined tumor phototherapy. Mater Today Bio 2024; 26:101019. [PMID: 38516170 PMCID: PMC10950690 DOI: 10.1016/j.mtbio.2024.101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Nanotechnology for tumor diagnosis and optical therapy has attracted widespread interest due to its low toxicity and convenience but is severely limited due to uncontrollable tumor targeting. In this work, homologous cancer cell membrane-camouflaged multifunctional hybrid metal coordination nanoparticles (DRu/Gd@CM) were prepared for MRI-guided photodynamic therapy (PDT) and photothermal therapy (PTT) of tumors. Bimetallic coordination nanoparticles are composed of three functional modules: dopamine, Ru(dcbpy)3Cl2 and GdCl3, which are connected through 1,4-Bis[(1H-imidazole-1-yl)methyl]benzene (BIX). Their morphology can be easily controlled by adjusting the ratio of precursors. Optimistically, the intrinsic properties of the precursors, including the photothermal properties of polydopamine (PDA), the magnetic resonance (MR) response of Gd3+, and the singlet oxygen generation of Ru(dcbpy)3Cl2, are well preserved in the hybrid metal nanoparticles. Furthermore, the targeting of homologous cancer cell membranes enables these coordinated nanoparticles to precisely target tumor cells. The MR imaging capabilities and the combination of PDT and PTT were demonstrated in in vitro experiments. In addition, in vivo experiments indicated that the nanoplatform showed excellent tumor accumulation and therapeutic effects on mice with subcutaneous tumors, and could effectively eliminate tumors within 14 days. Therefore, it expanded the new horizon for the preparation of modular nanoplatform and imaging-guided optical therapy of tumors.
Collapse
Affiliation(s)
| | | | - Yaning Xia
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Zhengzhou, 450052, China
| | - Yinhua Li
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Zhengzhou, 450052, China
| | - Jianfeng Bao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Zhengzhou, 450052, China
| | - Yong Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Zhengzhou, 450052, China
| | - Yupeng Shi
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Zhengzhou, 450052, China
| |
Collapse
|
5
|
Xu H, Guo Z, Li M, Chaves HV, Pinto VDPT, Filho GC, Du M, Bezerra MM. Copper-Based Nanomaterials for Image-Guided Cancer Therapy. BIO INTEGRATION 2024; 5. [DOI: 10.15212/bioi-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Abstract
Cancer is a significant disease that poses a major threat to human health. Image-guided cancer therapy refers to a series of medical procedures that use imaging technology to precisely locate and treat cancer. Combining the dual characteristics of medical images and functional nanomaterial (NM) drug carriers, various integrated diagnosis and treatment probes have been developed for in vivo dynamic monitoring and therapeutic effect evaluation of drugs based on medical imaging. Copper (Cu)-based NMs have emerged as valuable products of nanotechnology due to their unique physicochemical properties, which are influenced by factors, such as size, shape, and surface properties. In the field of imaging, Cu-based NMs offer a combination of desirable characteristics, including fluorescence emission, contrast enhancement, and radiolabeling stability. These properties form the foundation for a wide range of imaging modalities. In addition, Cu-based NMs can be used as a carrier for diagnostic or therapeutic drugs and the synergistic effect of multiple therapeutic modalities can be realized by doping multiple transition metals into the heterostructures. These properties have become an important basis for imaging-guided therapy with Cu-based NMs. In this review we introduce biocompatible Cu-based NMs for image-guided cancer therapy and provide an overview of the promising outcomes in biomedical research.
Collapse
|
6
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
7
|
Wang R, Huang Z, Xiao Y, Huang T, Ming J. Photothermal therapy of copper incorporated nanomaterials for biomedicine. Biomater Res 2023; 27:121. [PMID: 38001505 PMCID: PMC10675977 DOI: 10.1186/s40824-023-00461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Studies have reported on the significance of copper incorporated nanomaterials (CINMs) in cancer theranostics and tissue regeneration. Given their unique physicochemical properties and tunable nanostructures, CINMs are used in photothermal therapy (PTT) and photothermal-derived combination therapies. They have the potential to overcome the challenges of unsatisfactory efficacy of conventional therapies in an efficient and non-invasive manner. This review summarizes the recent advances in CINMs-based PTT in biomedicine. First, the classification and structure of CINMs are introduced. CINMs-based PTT combination therapy in tumors and PTT guided by multiple imaging modalities are then reviewed. Various representative designs of CINMs-based PTT in bone, skin and other organs are presented. Furthermore, the biosafety of CINMs is discussed. Finally, this analysis delves into the current challenges that researchers face and offers an optimistic outlook on the prospects of clinical translational research in this field. This review aims at elucidating on the applications of CINMs-based PTT and derived combination therapies in biomedicine to encourage future design and clinical translation.
Collapse
Affiliation(s)
| | | | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
8
|
Zhao S, Wang J, Lu SY, Wang J, Chen Z, Sun Y, Xu T, Liu Y, He L, Chen C, Ouyang Y, Tan Y, Chen Y, Zhou B, Cao Y, Liu H. Facile Synthesis of Basic Copper Carbonate Nanosheets for Photoacoustic Imaging-Guided Tumor Apoptosis and Ferroptosis and the Extension Exploration of the Synthesis Method. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42317-42328. [PMID: 37640060 DOI: 10.1021/acsami.3c09785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Elimination of tumor cells using carbonate nanomaterials with tumor microenvironment-responsive capacity has been explored as an effective strategy. However, their therapeutic outcomes are always compromised by the relatively low intratumoral accumulation and limited synthesis method. Herein, a novel kind of basic copper carbonate nanosheets was designed and prepared using a green synthesis method for photoacoustic imaging-guided tumor apoptosis and ferroptosis therapy. These nanosheets were synthesized with the assistance of dopamine and ammonium bicarbonate (NH4HCO3) and the loading of glucose oxidase (GOx). NH4HCO3 could not only provide an alkaline environment for the polymerization of dopamine but also supply carbonates for the growth of nanosheets. The formed nanosheets displayed good acid and near-infrared light responsiveness. After intercellular uptake, they could be degraded to release Cu2+ and GOx, generating hydroxyl radicals through a Cu+-mediated Fenton-like reaction, consuming glucose, up-regulating H2O2 levels, and down-regulating GSH levels. Tumor elimination could be achieved by hydroxyl radical-induced apoptosis and ferroptosis. More amusingly, this synthesis method can be extended to several kinds of mono-element and multi-element carbonate nanomaterials (e.g., Fe, Mn, and Co), showing great potential for further tumor theranostics.
Collapse
Affiliation(s)
- Sheng Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jianxin Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shi-Yu Lu
- College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jingjing Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ziqun Chen
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yihao Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Ting Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yanqing Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Liang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Chunmei Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yi Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yixin Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yan Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Benqing Zhou
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou 515063, China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Hui Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Lu Y, Zhu D, Le Q, Wang Y, Wang W. Ruthenium-based antitumor drugs and delivery systems from monotherapy to combination therapy. NANOSCALE 2022; 14:16339-16375. [PMID: 36341705 DOI: 10.1039/d2nr02994d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ruthenium complex is an important compound group for antitumor drug research and development. NAMI-A, KP1019, TLD1433 and other ruthenium complexes have entered clinical research. In recent years, the research on ruthenium antitumor drugs has not been limited to single chemotherapy drugs; other applications of ruthenium complexes have emerged such as in combination therapy. During the development of ruthenium complexes, drug delivery forms of ruthenium antitumor drugs have also evolved from single-molecule drugs to nanodrug delivery systems. The review summarizes the following aspects: (1) ruthenium complexes from monotherapy to combination therapy, including the development of single-molecule compounds, carrier nanomedicine, and self-assembly of carrier-free nanomedicine; (2) ruthenium complexes in the process of ADME in terms of absorption, distribution, metabolism and excretion; (3) the applications of ruthenium complexes in combination therapy, including photodynamic therapy (PDT), photothermal therapy (PTT), photoactivated chemotherapy (PACT), immunotherapy, and their combined application; (4) the future prospects of ruthenium-based antitumor drugs.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Quynh Le
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Wei Wang
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| |
Collapse
|