1
|
Ni J, Li M, Li C, Zhong Z, Xi H, Wu Y. Stem-cell based soft tissue substitutes: Engineering of crosslinked polylysine-hyaluronic acid microspheres ladened with gingival mesenchymal stem cells for collagen tissue regeneration and angiogenesis. J Periodontol 2023; 94:1436-1449. [PMID: 37133980 DOI: 10.1002/jper.22-0747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND The aim of this study was to construct crosslinked polylysine-hyaluronic acid microspheres (pl-HAM) ladened with gingival mesenchymal stem cells (GMSCs) and explore its biologic behavior in soft tissue regeneration. METHODS The effects of the crosslinked pl-HAM on the biocompatibility and the recruitment of L-929 cells and GMSCs were detected in vitro. Moreover, the regeneration of subcutaneous collagen tissue, angiogenesis and the endogenous stem cells recruitment were investigated in vivo. We also detected the cell developing capability of pl-HAMs. RESULTS The crosslinked pl-HAMs appeared to be completely spherical-shaped particles and had good biocompatibility. L-929 cells and GMSCs grew around the pl-HAMs and increased gradually. Cell migration experiments showed that pl-HAMs combined with GMSCs could promote the migration of vascular endothelial cells significantly. Meanwhile, the green fluorescent protein-GMSCs in the pl-HAM group still remain in the soft tissue regeneration area 2 weeks after surgery. The results of in vivo studies showed that denser collagen deposition and more angiogenesis-related indicator CD31 expression in the pl-HAMs+ GMSCs + GeL group compared with the pl-HAMs + GeL group. Immunofluorescence showed that CD44, CD90, CD73 co-staining positive cells surrounded the microspheres in both pl-HAMs + GeL group and pl-HAM + GMSCs + GeL group. CONCLUSIONS The crosslinked pl-HAM ladened with GMSCs system could provide a suitable microenvironment for collagen tissue regeneration, angiogenesis and endogenous stem cells recruitment, which may be an alternative to autogenous soft tissue grafts for minimally invasive treatments for periodontal soft tissue defects in the future.
Collapse
Affiliation(s)
- Jing Ni
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Mengdi Li
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chaolun Li
- Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhe Zhong
- Center for Dental Research, Loma Linda University School of Dentistry, Loma Linda, California, USA
| | - Hongwei Xi
- Shanghai Qisheng Biological Preparation Co., Ltd., Shanghai, China
| | - Yiqun Wu
- Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
2
|
Zhao D, Chang Q, Fan J, Shu Q, Niu S, Li D, Xie Y, Deng X. Effects of ε‐polylysine and chitosan functionalization on pulp board properties for food packaging. J Appl Polym Sci 2022. [DOI: 10.1002/app.52770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Dandan Zhao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai China
| | - Jiahui Fan
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai China
| | - Qingfeng Shu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai China
| | - Shasha Niu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai China
| | - Dan Li
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai China
| |
Collapse
|
3
|
Yuan L, Gao Y, Xu Z, Chen G, Ge L, Mu C, Tian Y, Li D. Emulsion Template Fabrication of Antibacterial Gelatin-Based Scaffolds with a Preferred Microstructure for Accelerated Wound Healing. ACS APPLIED POLYMER MATERIALS 2022. [DOI: 10.1021/acsapm.2c00350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lun Yuan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China
| | - Ya Gao
- Department of College English, School of Foreign Languages and Cultures, Chengdu University, Chengdu 610106, P. R. China
| | - Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China
| | - Guixin Chen
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China
| | - Ye Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China
| |
Collapse
|
4
|
Wahid F, Zhao XJ, Zhao XQ, Ma XF, Xue N, Liu XZ, Wang FP, Jia SR, Zhong C. Fabrication of Bacterial Cellulose-Based Dressings for Promoting Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32716-32728. [PMID: 34227797 DOI: 10.1021/acsami.1c06986] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial cellulose (BC) holds several unique properties such as high water retention capability, flexibility, biocompatibility, and high absorption capacity. All these features make it a potential material for wound healing applications. However, it lacks antibacterial properties, which hampers its applications for infectious wound healings. This study reported BC-based dressings containing ε-polylysine (ε-PL), cross-linked by a biocompatible and mussel-inspired polydopamine (PDA) for promoting infectious wound healing. BC membranes were coated with PDA by a simple self-polymerization process, followed by treating with different contents of ε-PL. The resulted membranes showed strong antibacterial properties against tested bacteria by both in vitro and in vivo evaluations. The membranes also exhibited hemocompatibility and cytocompatibility by in vitro investigations. Moreover, the functionalized membranes promoted infected wound healing using Sprague-Dawley rats as a model animal. A complete wound healing was observed in the group treated with functionalized membranes, while wounds were still open for control and pure BC groups in the same duration. Histological investigations indicated that the thickness of newborn skin was greater and smoother in the groups treated with modified membranes in comparison to neat BC or control groups. These results revealed that the functionalized membranes have great potential as a dressing material for infected wounds in future clinical applications.
Collapse
Affiliation(s)
- Fazli Wahid
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300222, P.R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300222, P.R. China
| | - Xiang-Jun Zhao
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300222, P.R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300222, P.R. China
| | - Xue-Qing Zhao
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300222, P.R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300222, P.R. China
| | - Xiao-Fang Ma
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300222, PR China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, The Fifth Central Hospital of Tianjin, Tianjin 300222, PR China
| | - Na Xue
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300222, PR China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, The Fifth Central Hospital of Tianjin, Tianjin 300222, PR China
| | - Xiao-Zhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300222, PR China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, The Fifth Central Hospital of Tianjin, Tianjin 300222, PR China
| | - Feng-Ping Wang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300222, P.R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300222, P.R. China
| | - Shi-Ru Jia
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300222, P.R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300222, P.R. China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300222, P.R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300222, P.R. China
| |
Collapse
|