1
|
Sharma A, Biswas P, Singh MR. Metal-Organic Framework-Templated Synthesis of Nickel-Alumina Nanocatalysts Improves Catalyst-Support Interaction for Higher Activity and Stability in Biogas Reforming under Controlled Oxidizing Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67620-67634. [PMID: 39589021 DOI: 10.1021/acsami.4c12538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Tri-reforming methane with CO2, O2, and H2O mixtures requires a delicate balance of dry-reforming, partial oxidation, and steam-reforming reactions to improve the CO2 conversion and H2/CO ratio. Nickel-alumina has been reported before for the tri-reforming of methane, although at higher temperatures (>900 °C). This is because the current approaches for nickel-alumina synthesis are ineffective in generating stronger catalyst-support interactions necessary to maintain higher active sites and stall carbon nanotube (CNT) deposition. Here, we report a synthesis method that allows controlled loading of nickel on alumina-based MIL-53 metal-organic framework followed by calcination to generate 2.5-10 wt % nickel nanoparticles dispersed on alumina. The 5 wt % nickel-alumina mixtures resulted in nanometer-sized crystallites, better metal dispersion, and more active sites for enhanced catalytic activity. This optimal loading of nickel allows stronger interaction with alumina for over 100 h of stable performance of tri-reforming at 800 °C, achieving ∼98% CH4 conversion, ∼36% CO2 conversion, and no carbon deposition while producing Fischer-Tropsch-ready feed containing a H2/CO ratio of 3.2.
Collapse
Affiliation(s)
- Arisha Sharma
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Prakash Biswas
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Meenesh R Singh
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
2
|
Abasaeed AE, Ibrahim AA, Fakeeha AH, Bayazed MO, Amer MS, Abu‐Dahrieh JK, Al‐Fatesh AS. Ni-Co Bimetallic Catalysts Supported on Mixed Oxides (Sc-Ce-Zr) for Enhanced Methane Dry Reforming. ChemistryOpen 2024; 13:e202400086. [PMID: 39533456 PMCID: PMC11625958 DOI: 10.1002/open.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/16/2024] [Indexed: 11/16/2024] Open
Abstract
Dry methane reforming (DRM) presents a viable pathway for converting greenhouse gases into useful syngas. Nevertheless, the procedure requires robust and reasonably priced catalysts. This study explored using cost-effective cobalt and nickel combined into a single catalyst with different metal ratios. The reaction was conducted in a fixed reactor at 700 °C. The findings indicate that the incorporation of cobalt significantly enhances catalyst performance by preventing metal sintering, improving metal dispersion, and promoting beneficial metal-support interactions. The best-performing catalyst (3.75Ni+1.25Co-ScCeZr) achieved a good conversion rate of CH4 and CO2 at 46.8 %, and 60 % respectively after 330 minutes while maintaining good stability. The TGA and CO2-TPD analysis results show that the addition of Co to Ni reduces carbon formation, and increases the amount of strong basic sites and isolated O2- species, and the total amount of CO2 desorbed. These results collectively highlight the potential of cobalt-nickel catalysts for practical DRM applications and contribute to developing sustainable energy technologies.
Collapse
Affiliation(s)
- Ahmed E. Abasaeed
- Chemical Engineering Department, College of EngineeringKing Saud UniversityRiyadh11421Saudi Arabia
| | - Ahmed A. Ibrahim
- Chemical Engineering Department, College of EngineeringKing Saud UniversityRiyadh11421Saudi Arabia
| | - Anis H. Fakeeha
- Chemical Engineering Department, College of EngineeringKing Saud UniversityRiyadh11421Saudi Arabia
| | - Mohammed O. Bayazed
- Chemical Engineering Department, College of EngineeringKing Saud UniversityRiyadh11421Saudi Arabia
| | - Mabrook S. Amer
- Chemistry Department, College of ScienceKing Saud UniversityRiyadh11451Saudi Arabia
| | - Jehad K. Abu‐Dahrieh
- School of Chemistry and Chemical EngineeringQueen's University BelfastBelfast, Northern IrelandBT9 5AGUK
| | - Ahmed S. Al‐Fatesh
- Chemical Engineering Department, College of EngineeringKing Saud UniversityRiyadh11421Saudi Arabia
| |
Collapse
|
3
|
Baamran K, Lawson S, Rezaei F, Rownaghi AA. Reactive Carbon Capture: Cooperative and Bifunctional Adsorbent-Catalyst Materials and Process Integration for a New Carbon Economy. Acc Chem Res 2024; 57:2383-2394. [PMID: 39058383 PMCID: PMC11339924 DOI: 10.1021/acs.accounts.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
ConspectusTo say the least, releasing CO2 into the atmosphere is reaping undue environmental consequences given the ever-present increase in severe global weather events over the past five years. However, it can be argued that-at least in the confines of current technological capabilities-the atmospheric release of CO2 is somewhat unavoidable given that even shifting toward clean energy sources-such as solar, nuclear, wind, battery, or H2 power-incurs an initial carbon requirement by way of manufacturing the very production abilities through which "clean" energy is generated. Even years from now, experts agree that energy production will be diversified and-as the global population continues to drive the growth of global energy consumption-thermal power derived from carbon combustion is likely to remain one intrinsic energetic source, of which CO2 will always be a byproduct. In this context, it is the responsibility of the scientific community to devise improved pathways of carbon management such that (i) the consequences of combustion on the global environment are reduced and (ii) carbon fuels can be leveraged in a sustainable fashion.In this Account, we discuss a pivotal perspective shift on CO2 emissions derived from a considerable breakthrough in material science from our work on shape engineering of nanoporous adsorbents and catalysts. This account details the development of materials which no longer vilify CO2 emissions as a valueless combustion byproduct, instead providing a path for them to become a potential feedstock. In more specific terms, this work details the development of structured, cooperative "bifunctional" materials (BFMs) comprised of (i) a high-temperature adsorbent and (ii) a heterogeneous catalyst that enable single-bed CO2 capture and utilization in oxidative ethane dehydrogenation (ODHE), oxidative propane dehydrogenation (ODHP), and dry methane reforming (DMR) processes. This Account begins with the conceptual development of the BFMs in the powdered state, followed by detailing the first-ever reports of structuring the materials into facile honeycomb contactors by 3D printing. The Account then summarizes the impressive performance of the 3D-printed BFMs, specifically focusing on how their catalysts (metal oxides and perovskites) influence their reactive CO2 capture performances in ODHE, ODHP, and DMR processes. Such promise of CO2-as-fuel offers a glimpse into the future of a diversified energy economy, in which CO2/fuel looping can play an important role. A major factor in achieving this future is, of course, developing an appropriately active catalyst; an account of whose first breakthroughs in material science are detailed herein.
Collapse
Affiliation(s)
- Khaled Baamran
- National
Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
- NETL
Support Contractor, 626
Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
| | - Shane Lawson
- Donaldson
Company, Inc, 1400 W
94th Street, Minneapolis, Minnesota 55431, United States
| | - Fateme Rezaei
- Department
of Chemical, Environmental and Materials Engineering, University of Miami, Miami, Florida 33124, United States
| | - Ali. A. Rownaghi
- National
Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, Pennsylvania 15236, United States
| |
Collapse
|
4
|
Lin S, Chen Y, Li H, Wang W, Wang Y, Wu M. Application of metal-organic frameworks and their derivates for thermal-catalytic C1 molecules conversion. iScience 2024; 27:109656. [PMID: 38650984 PMCID: PMC11033205 DOI: 10.1016/j.isci.2024.109656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
One-carbon (C1) catalysis refers to the conversion of compounds with a single carbon atom, especially carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4), into clean fuels and valuable chemicals via catalytic strategy is crucial for sustainable and green development. Among various catalytic strategies, thermal-driven process seems to be one of the most promising pathways for C1 catalysis due to the high efficiency and practical application prospect. Notably, the rational design of thermal-driven C1 catalysts plays a vital role in boosting the targeted products synthesis of C1 catalysis, which relies heavily on the choice of ideal active site support, catalyst fabrication precursor, and catalytic reaction field. As a novel crystalline porous material, metal-organic frameworks (MOFs) has made significant progress in the design and synthesis of various functional nanomaterials. However, the application of MOFs in C1 catalysis faces numerous challenges, such as thermal stability, mechanical strength, yield of MOFs, and so on. To overcome these limitations and harness the advantages of MOFs in thermal-driven C1 catalysis, researchers have developed various catalyst/carrier preparation strategies. In this review, we provide a concise overview of the recent advancements in the conversion of CO, CO2, and CH4 into clean fuels and valuable chemicals via thermal-catalytic strategy using MOFs-based catalysts. Furthermore, we discuss the main challenges and opportunities associated with MOFs-based catalysts for thermal-driven C1 catalysis in the future.
Collapse
Affiliation(s)
- Shiyuan Lin
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yongjie Chen
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Huayong Li
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenhang Wang
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yang Wang
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingbo Wu
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
5
|
Hou SL, Dong J, Zhao XY, Li XS, Ren FY, Zhao J, Zhao B. Thermocatalytic Conversion of CO 2 to Valuable Products Activated by Noble-Metal-Free Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202305213. [PMID: 37170958 DOI: 10.1002/anie.202305213] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Thermocatalysis of CO2 into high valuable products is an efficient and green method for mitigating global warming and other environmental problems, of which Noble-metal-free metal-organic frameworks (MOFs) are one of the most promising heterogeneous catalysts for CO2 thermocatalysis, and many excellent researches have been published. Hence, this review focuses on the valuable products obtained from various CO2 conversion reactions catalyzed by noble-metal-free MOFs, such as cyclic carbonates, oxazolidinones, carboxylic acids, N-phenylformamide, methanol, ethanol, and methane. We classified these published references according to the types of products, and analyzed the methods for improving the catalytic efficiency of MOFs in CO2 reaction. The advantages of using noble-metal-free MOF catalysts for CO2 conversion were also discussed along the text. This review concludes with future perspectives on the challenges to be addressed and potential research directions. We believe that this review will be helpful to readers and attract more scientists to join the topic of CO2 conversion.
Collapse
Affiliation(s)
- Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jie Dong
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xin-Yuan Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Xiang-Shuai Li
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Fang-Yu Ren
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jian Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
Chung WT, Mekhemer IM, Mohamed MG, Elewa AM, EL-Mahdy AF, Chou HH, Kuo SW, Wu KCW. Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
7
|
Zou Z, Zhang T, Lv L, Tang W, Zhang G, Gupta RK, Wang Y, Tang S. Controllable Preparation of Nano-Ni to Eliminate Step Edges of Carbon Deposition on Ni-Based Catalysts for Methane Dry Reforming. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Zongpeng Zou
- Department of Chemical Engineering, Sichuan University, Chengdu 610000, PR China
| | - Tao Zhang
- Department of Chemical Engineering, Sichuan University, Chengdu 610000, PR China
| | - Li Lv
- Department of Chemical Engineering, Sichuan University, Chengdu 610000, PR China
| | - Wenxiang Tang
- Department of Chemical Engineering, Sichuan University, Chengdu 610000, PR China
| | - Guoquan Zhang
- Department of Chemical Engineering, Sichuan University, Chengdu 610000, PR China
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Yan Wang
- Department of Chemical Engineering, Sichuan University, Chengdu 610000, PR China
| | - Shengwei Tang
- Department of Chemical Engineering, Sichuan University, Chengdu 610000, PR China
| |
Collapse
|
8
|
Andrade LS, Lima HH, Silva CT, Amorim WL, Poço JG, López-Castillo A, Kirillova MV, Carvalho WA, Kirillov AM, Mandelli D. Metal–organic frameworks as catalysts and biocatalysts for methane oxidation: The current state of the art. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Huang N, Su T, Qin Z, Ji H. Nickel Supported on Multilayer Vanadium Carbide for Dry Reforming of Methane. ChemistrySelect 2022. [DOI: 10.1002/slct.202203873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nongfeng Huang
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology Guangxi University 100 Daxue Road Nanning 530004 P. R. China
| | - Tongming Su
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology Guangxi University 100 Daxue Road Nanning 530004 P. R. China
| | - Zuzeng Qin
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology Guangxi University 100 Daxue Road Nanning 530004 P. R. China
| | - Hongbing Ji
- Fine Chemical Institute Sun Yat-sen University 135 Xingangxi Road Guangzhou 510275 P. R. China
| |
Collapse
|
10
|
Miao C, Chen S, Shang K, Liang L, Ouyang J. Highly Active Ni-Ru Bimetallic Catalyst Integrated with MFI Zeolite-Loaded Cerium Zirconium Oxide for Dry Reforming of Methane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47616-47632. [PMID: 36223106 DOI: 10.1021/acsami.2c12123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The dry reforming of methane (DRM) is a new potential technology that converts two major greenhouse gases into useful chemical feedstocks. The main challenge faced by this process is maintaining the catalyst with high catalytic activity and long-term stability. Here, a simple and effective preparation route for the synthesis of functional nanomolecular sieve catalysts (NiRuxCZZ5) from kaolinite tailings was developed for dry reforming of methane with CO2. The silica monoliths with flower-like spherical and micropore structures (ZSM-5) were prepared by crystal growth method, and the metal components were loaded by ultrasonic-assisted impregnation method. The NiRu0.5CZZ5 catalyst exhibited excellent catalytic performance (maxmium CO2 and CH4 conversions up to 100 and 95.6%, respectively) and very good stability (up to 100h). The interfacial confinement and the strong support interaction are principally responsible for the excellent catalytic activity of the catalyst. The in situ DRIFTS was used to elucidate the possible carbon conversion steps, and stable surface intermediates were also identified.
Collapse
Affiliation(s)
- Chao Miao
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha410083, China
- Centre for Mineral Materials, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| | - Shumei Chen
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha410083, China
- Centre for Mineral Materials, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| | - Kaixuan Shang
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha410083, China
- Centre for Mineral Materials, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| | - Lixing Liang
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha410083, China
- Centre for Mineral Materials, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| | - Jing Ouyang
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha410083, China
- Centre for Mineral Materials, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
- Key Lab of Clay Mineral Functional Materials in China Building Materials Industry, Central South University, Changsha410083, China
| |
Collapse
|
11
|
Tsuji Y, Yoshida M, Kamachi T, Yoshizawa K. Oxidative Addition of Methane and Reductive Elimination of Ethane and Hydrogen on Surfaces: From Pure Metals to Single Atom Alloys. J Am Chem Soc 2022; 144:18650-18671. [PMID: 36153993 DOI: 10.1021/jacs.2c08787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative addition of CH4 to the catalyst surface produces CH3 and H. If the CH3 species generated on the surface couple with each other, reductive elimination of C2H6 may be achieved. Similarly, H's could couple to form H2. This is the outline of nonoxidative coupling of methane (NOCM). It is difficult to achieve this reaction on a typical Pt catalyst surface. This is because methane is overoxidized and coking occurs. In this study, the authors approach this problem from a molecular aspect, relying on organometallic or complex chemistry concepts. Diagrams obtained by extending the concepts of the Walsh diagram to surface reactions are used extensively. C-H bond activation, i.e., oxidative addition, and C-C and H-H bond formation, i.e., reductive elimination, on metal catalyst surfaces are thoroughly discussed from the point of view of orbital theory. The density functional theory method for structural optimization and accurate energy calculations and the extended Hückel method for detailed analysis of crystal orbital changes and interactions play complementary roles. Limitations of monometallic catalysts are noted. Therefore, a rational design of single atom alloy (SAA) catalysts is attempted. As a result, the effectiveness of the Pt1/Au(111) SAA catalyst for NOCM is theoretically proposed. On such an SAA surface, one would expect to find a single Pt monatomic site in a sea of inert Au atoms. This is desirable for both inhibiting overoxidation and promoting reductive elimination.
Collapse
Affiliation(s)
- Yuta Tsuji
- Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| | - Masataka Yoshida
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Takashi Kamachi
- Department of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, Higashi-ku, Fukuoka 811-0295, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Du CB, Law ZX, Huang RY, Tsai DH. Aerosol-phase synthesis of bimetallic NiCu oxide-decorated CeO2 nanoparticle cluster for catalytic methane combustion. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Investigation of H2 production via an integrated pathway of consecutive CO oxidation and dry methane reforming in the presence of Co3O4@HNTs catalyst. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02510-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Zulkifli ZI, Lim KL, Teh LP. Metal‐Organic Frameworks (MOFs) and their Applications in CO
2
Adsorption and Conversion. ChemistrySelect 2022. [DOI: 10.1002/slct.202200572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zuraini I. Zulkifli
- Department of Chemical Sciences Faculty of Science and Technology Universiti Kebangsaan 43600 UKM Bangi Selangor Malaysia
| | - Kean L. Lim
- Fuel Cell Institute Universiti Kebangsaan 43600 UKM Bangi Selangor Malaysia
| | - Lee P. Teh
- Department of Chemical Sciences Faculty of Science and Technology Universiti Kebangsaan 43600 UKM Bangi Selangor Malaysia
| |
Collapse
|
15
|
Zhang X, Deng J, Lan T, Shen Y, Qu W, Zhong Q, Zhang D. Coking- and Sintering-Resistant Ni Nanocatalysts Confined by Active BN Edges for Methane Dry Reforming. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25439-25447. [PMID: 35604327 DOI: 10.1021/acsami.2c04149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Methane dry reforming (MDR) has attracted significant attention for effectively consuming greenhouse gases and producing valuable syngas. The development of coking- and sintering-resistant catalysts is still a challenge. Herein, highly active Ni nanocatalysts confined by the active edges of boron nitride have been originally developed, and the coking- and sintering-resistant MDR mechanism has also been unraveled. The active edges of boron nitride consisted of boundary BOx species interact with Ni nanoparticles (NPs), which can contribute to the activation of both CH4 and CO2. The etching of BN is restrained under the buffer of boundary BOx species. Operando spectra reveal that the formation and conversion of active bicarbonate species is accelerated by the boundary BOx species. The complete decomposition of CH4 is suppressed, and thus the coke formation is restricted. The functional groups of active BN edges are confirmed to stabilize the Ni NPs and facilitate the MDR reaction. This work provides a novel approach for the development of coking- and sintering-resistant catalysts for MDR.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Jiang Deng
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Tianwei Lan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Yongjie Shen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Wenqiang Qu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Qingdong Zhong
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| |
Collapse
|
16
|
Li L, Chen J, Zhang Y, Sun J, Zou G. Ni-Co bimetallic catalysts on coconut shell activated carbon prepared using solid-phase method for highly efficient dry reforming of methane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37685-37699. [PMID: 35066826 DOI: 10.1007/s11356-021-18178-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Ni-Co bimetallic catalysts supported on coconut shell activated carbon are synthesized using solid-phase method and investigated for dry reforming of methane, to explore the impact of Ni:Co ratio on the catalyst activity and stability. The catalyst performances are evaluated under the temperature varying from 600 to 900 °C and gas hourly space velocity (GHSV) of 7200 mL/h·g-cat. The characterization results show that metal nanoparticles are produced on the support, and the bimetallic catalyst with an explicit Ni:Co ratio (2:1) is the most beneficial for metal particle dispersion and acquires the minimum particle size of 4.41 nm. The bimetallic catalysts with an explicit Ni:Co ratio of 1:2 and 1:1 exhibit a synergistic effect towards the conversions of CH4 and CO2, respectively. The experimental results reveal that the highest CH4 and CO2 conversions rise to 94.0% and 97.5% within 12 h at 900 °C on average, respectively, assisted with the two bimetallic catalysts. The intensity of disordered carbon and thermal stability are enhanced with the extension of reforming process, contributing to a long-term catalytic stability. Besides, no obvious carbon deposition is detected, leading to a highly catalytic stability for the bimetallic catalysts.
Collapse
Affiliation(s)
- Longzhi Li
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China.
| | - Jian Chen
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China
| | - Yue Zhang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China
| | - Jifu Sun
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China
| | - Guifu Zou
- College of Energy, Soochow University, Suzhou, 215006, Jiangsu Province, China
| |
Collapse
|
17
|
Hsieh PF, Law ZX, Lin CH, Tsai DH. Understanding Solvothermal Growth of Metal-Organic Framework Colloids for CO 2 Capture Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4415-4424. [PMID: 35357172 DOI: 10.1021/acs.langmuir.2c00165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A quantitative study of the synthesis of metal-organic framework (MOF) colloids via a solvothermal growth process was demonstrated using electrospray-differential mobility analysis (ES-DMA), a gas-phase electrophoresis approach. HKUST-1, a copper-based MOF (Cu-MOF), was selected as the representative MOF of the study. The effects of the synthetic parameters, including ligand concentration (CBTC), synthetic temperature (Ts), and synthetic time (ts) versus material properties of the Cu-MOF, were successfully characterized based on the mobility size distributions measured by ES-DMA. The results show that the mobility size of Cu-MOF was proportional to Ts, ts, and CBTC during the solvothermal growth. X-ray diffraction and Brunauer-Emmett-Teller analyses were employed complementarily to the ES-DMA, confirming that the increase in mobility size of Cu-MOF was correlated to the increase in crystallinity (i.e., larger specific surface area and crystallite size). The results of CO2 pulse adsorption show that the synthesized Cu-MOF possessed a good CO2 adsorption ability under 1 atm, 35 °C, and the cumulative amount of CO2 uptake was proportional to the measured mobility size of Cu-MOF. The work provides a proof of concept for the controlled synthesis of MOF colloids with the support of gas-phase electrophoretic analysis, and the quantitative methodology is useful for the development of MOF-based applications in CO2 capture and utilization.
Collapse
Affiliation(s)
- Pei-Fang Hsieh
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| | - Zhi Xuan Law
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan R.O.C
| | - De-Hao Tsai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| |
Collapse
|
18
|
Sustainable Synthesis of a Highly Stable and Coke-Free Ni@CeO2 Catalyst for the Efficient Carbon Dioxide Reforming of Methane. Catalysts 2022. [DOI: 10.3390/catal12040423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A facile and green synthetic strategy is developed in this paper for the construction of an efficient catalyst for the industrially important carbon dioxide reforming of methane, which is also named the dry reforming of methane (DRM). Through controlling the synthetic strategy and Ni content, a high-performance Ni@CeO2 catalyst was successfully fabricated. The catalyst showed superb efficiency for producing the syngas with high and stable conversions at prolonged operating conditions. Incorporating Ni during the ceria (CeO2) crystallization resulted in a more stable structure and smaller nanoparticle (NP) size with a more robust interaction with the support than loading Ni on CeO2 supports by the conventional impregnation method. The H2/CO ratio was almost 1.0, indicating the promising applicability of utilizing the obtained syngas for the Fischer–Tropsch process to produce worthy chemicals. No carbon deposits were observed over the as-synthesized catalyst after operating the DRM reaction for 50.0 h, even at a more coke-favoring temperature (700 ∘C). Owing to the superb resistance to coke and sintering, control of the size of the Ni-NPs, uniform dispersion of the active phase, and potent metal interaction with the support, the synthesized catalyst achieved a magnificent catalytic activity and durability during serving for the DRM reaction for extended operating periods.
Collapse
|
19
|
Atinafu DG, Yun BY, Yang S, Kang Y, Kim S. Updated results on the integration of metal-organic framework with functional materials toward n-alkane for latent heat retention and reliability. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127147. [PMID: 34560485 DOI: 10.1016/j.jhazmat.2021.127147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Phase change composites are in high demand in thermal management systems. Various supporting materials, including nanocomposites, have been employed to develop shape-stable phase change materials (PCMs). As the reliability of most composite materials has mostly been studied right after the preparation with specific thermal cycling measurements, it is difficult to analyze the long-term leakage-resistance capability and energy retention capacity. Additionally, achieving multifunctional phase change composites is a significant challenge for single supporting materials. Herein, we provide a follow-up report on the thermal performance of hybrid material-supported n-alkane after a storage time of one year and 50 heating/cooling cycles. The interconnected hybrid material composed of a metal-organic framework (MOF) and graphite improved the shape/thermal stability of tetradecane (TD). The as-synthesized MOF/graphite/TD composites exhibited a high latent heat retention capacity of 84.2%, low leakage rate of 1.25%, and high PCM loading capacity, making them suitable for thermal management applications, such as industrial waste heat recovery systems. Furthermore, the intermolecular interactions and capillary forces between the hybrid materials and TD provided high stability and compatibility. Therefore, the as-prepared hybrid material fabricated in this study can be important in the development of multidirectional composite PCMs with comprehensive thermal characteristics.
Collapse
Affiliation(s)
- Dimberu G Atinafu
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Yeol Yun
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungwoong Yang
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yujin Kang
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
20
|
Liu L, Das S, Zhang Z, Kawi S. Nonoxidative Coupling of Methane over Ceria-Supported Single-Atom Pt Catalysts in DBD Plasma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5363-5375. [PMID: 35072474 DOI: 10.1021/acsami.1c21550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasma-catalytic direct nonoxidative coupling of methane (NCM) into C2 hydrocarbons was investigated over ceria-supported atomically dispersed Pt (Pt/CeO2-SAC) and nanoparticle Pt (Pt/CeO2-NP) catalysts in dielectric barrier discharge (DBD) plasma. Nonthermal plasma facilitated C-H bond dissociation in CH4 at low temperatures (<150 °C) and atmospheric pressure. The presence of Pt/CeO2 catalysts in plasma further enhanced CH4 conversion and C2 hydrocarbon selectivity by enabling the conversion of vibrationally excited methane species with high internal energy on active Pt sites. Noticeably, the Pt/CeO2-SAC catalyst displayed a more remarkable performance, with a CH4 conversion of 39% and a C2 selectivity of 54% at 54 W. The enhanced CH4 conversion was attributed to abundant coordinatively unsaturated Pt sites in Pt/CeO2-SAC, which were more active for C-H bond scission. Meanwhile, isolated Pt atoms in Pt/CeO2-SAC promoted C2 hydrocarbon formation by hindering the unselective formation of coke from deep dehydrogenation of CHx• intermediates and higher hydrocarbons from oligomerization reactions.
Collapse
Affiliation(s)
- Lina Liu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sonali Das
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585
| | - Zhikun Zhang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Sibudjing Kawi
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585
| |
Collapse
|
21
|
Shu H, Lai T, Ren J, Cui X, Tian X, Yang Z, Xiao X, Wang Y. Trimetallic metal-organic frameworks (Fe, Co, Ni-MOF) derived as efficient electrochemical determination for ultra-micro imidacloprid in vegetables. NANOTECHNOLOGY 2022; 33:135502. [PMID: 34911048 DOI: 10.1088/1361-6528/ac4350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The excessive use of imidacloprid in agricultural production leads to a large number of residues that seriously threaten human health. Therefore, the detection of imidacloprid has become very important. But how to quantitatively detect imidacloprid at ultra-low levels is the main challenges. In this work, trimetallic metal-organic frameworks Fe, Co, Ni-MOF (FCN-MOF) isin situprepared on nickel foam (NF) and then used to make an electrochemical sensor in the detection of imidacloprid. FCN-MOF exhibits the characteristics of ultra-micro concentration detection for imidacloprid with high specific surface area and rich active metal centers. The high conductivity and 3D skeleton structure of the NF electrode enhance the contact site with imidacloprid and promote the transmission of electrons efficiently. All results show that the prepared electrochemical sensor has the advantages of ultra-low detection limits (0.1 pM), wide linear detection ranges (1-5 × 107pM) and good sensitivity (132.91μA pM‒1cm‒2), as well as good reproducibility, excellent anti-interference ability, and fantastic stability. Meanwhile, the electrochemical sensor is used to determine imidacloprid in lettuce, tomato, and cucumber samples with excellent recovery (90%-102.7%). The novel electrochemical sensor is successfully applied to the ultra-micro detection of imidacloprid in vegetables, which provides a new way for the efficient monitoring of imidacloprid in agriculture.
Collapse
Affiliation(s)
- Hui Shu
- School of Materials and Energy, Yunnan University, Kunming 6500504, People's Republic of China
| | - Tingrun Lai
- School of Materials and Energy, Yunnan University, Kunming 6500504, People's Republic of China
| | - Jie Ren
- School of Materials and Energy, Yunnan University, Kunming 6500504, People's Republic of China
| | - Xiuxiu Cui
- School of Materials and Energy, Yunnan University, Kunming 6500504, People's Republic of China
| | - Xu Tian
- School of Materials and Energy, Yunnan University, Kunming 6500504, People's Republic of China
| | - Zhichao Yang
- School of Materials and Energy, Yunnan University, Kunming 6500504, People's Republic of China
| | - Xuechun Xiao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming 6500504, People's Republic of China
| | - Yude Wang
- School of Materials and Energy, Yunnan University, Kunming 6500504, People's Republic of China
- Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 6500504, People's Republic of China
| |
Collapse
|
22
|
A Novel LaAlO3 Perovskite with Large Surface Area Supported Ni-Based Catalyst for Methane Dry Reforming. Catal Letters 2022. [DOI: 10.1007/s10562-021-03910-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Yang CM, Huynh MV, Liang TY, Le TK, Kieu Xuan Huynh T, Lu SY, Tsai DH. Metal-organic framework-derived Mg-Zn hybrid nanocatalyst for biodiesel production. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Wang C, Su T, Qin Z, Ji H. Coke-resistant Ni-based bimetallic catalysts for the dry reforming of methane: effects of indium on the Ni/Al 2O 3 catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00582d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the quest for highly efficient coke-resistant catalysts for the dry reforming of methane (DRM) to produce syngas, a series of Ni–In/γ-Al2O3 catalysts with various Ni contents were prepared via a “two-solvent” method and used for the DRM reaction.
Collapse
Affiliation(s)
- Chuanshen Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Tongming Su
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Zuzeng Qin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Hongbing Ji
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| |
Collapse
|
25
|
Zhang S, Tang L, Yu J, Zhan W, Wang L, Guo Y, Guo Y. Spherical Ni Nanoparticles Supported by Nanosheet-Assembled Al 2O 3 for Dry Reforming of CH 4: Elucidating the Induction Period and Its Excellent Resistance to Coking. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58605-58618. [PMID: 34866393 DOI: 10.1021/acsami.1c17890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The design and preparation of efficient coking-resistant catalysts for dry reforming of methane (DRM) is significant for industrial applications but a challenge for supported Ni catalysts. Nanosheet-assembled Al2O3 (NA-Al2O3) with hierarchical hollow microspheres was used to support Ni nanoparticles, which exhibits superior long-time stability and coking resistance for the DRM reaction from 700 to 800 °C without coke deposition. Active Ni species, exsolved from NiAl2O4 spinel, are aggregated into Ni nanoparticles and finally stabilize as spherical Ni nanoparticles of 18.0 nm due to the spatial confinement of hierarchical hollow microspheres of the NA-Al2O3 support after the DRM reaction for 60 h. The catalytic activity in the induction period of the Ni/(NA-Al2O3) catalyst increases because of the enhancement of the surface Ni0/(Ni0+Ni2+) ratio, that is, the increment of the amount of active Ni sites. The spherical Ni nanoparticles embedded in the NA-Al2O3 support, superior CO2 adsorption ability, and more surface hydroxyl groups on the Ni/(NA-Al2O3) catalyst are the determining factors for its long-time stability and excellent anti-coking for the DRM reaction.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Linlin Tang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jun Yu
- Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Wangcheng Zhan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Li Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanglong Guo
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
26
|
Hoang TTN, Lin YS, Le TNH, Le TK, Huynh TKX, Tsai DH. Cu-ZnO@Al2O3 hybrid nanoparticle with enhanced activity for catalytic CO2 conversion to methanol. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
|
28
|
Wang F, Han K, Yu W, Zhao L, Wang Y, Wang X, Yu H, Shi W. Low Temperature CO 2 Reforming with Methane Reaction over CeO 2-Modified Ni@SiO 2 Catalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35022-35034. [PMID: 32644767 DOI: 10.1021/acsami.0c09371] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing high performance catalysts for the low temperature CO2 reforming with methane (CRM) reaction is a challenge due to the occurrences of metal sintering and carbon deposition. In this study, we synthesized CeO2 modified Ni@SiO2 catalysts with excellent properties of sintering-resistance and low carbon deposition for high performance low temperature CRM. The Ni@SiO2-CeO2 catalysts displayed a size effect from tiny Ni nanoparticles to enhance CRM performance and a confinement effect from silica encapsulation to limit Ni sintering and exhibited oxygen storage capacity from ceria to reduce carbon deposition. Performance and characterization results revealed that the Ni@SiO2-CeO2-W catalyst with smaller ceria size exhibited higher performance and lower carbon deposition than the Ni@SiO2-CeO2-E catalyst with bigger ceria size, because the smaller ceria nanoparticles activated more CO2. This work provided a simple strategy to deposit small sized ceria on the Ni@SiO2 catalyst surface for the performance enhancement of low temperature CRM.
Collapse
Affiliation(s)
- Fagen Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Kaihang Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weishu Yu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojun Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hao Yu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|