1
|
Huang H, Xu R, Ni P, Zhang Z, Sun C, He H, Wang X, Zhang L, Liang Z, Liu H. Water-driven noninvasively detachable wet tissue adhesives for wound closure. Mater Today Bio 2022; 16:100369. [PMID: 35937571 PMCID: PMC9352973 DOI: 10.1016/j.mtbio.2022.100369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 01/31/2023] Open
Abstract
Tissue adhesive with on-demand detachment feature is critically important since it can minimize hurt to patient when it is stripped away. Herein, a water-driven noninvasively detachable wet tissue adhesive hydrogel (w-TAgel) was produced by UV-initiated radical copolymerization of N-isopropylacrylamide (NIPAM), acrylamide (AAm), gelatin methacrylate (GelMA), and urushiol. As a w-TAgel, its robust and tough mechanical property makes it suitable for dynamic wound tissue. The polyurushiol segments of it are crucial to the formation of tough adhesion interface with various wet tissues, while polyNIPAM units play an indispensable role in on-demand detachment via thermo-responsive swelling behavior because the hydrophobic aggregation among isopropyl groups is destroyed upon water treatment with temperature of 25 °C or less. Additionally, it exhibits multiple merits including good hemocompatibility, cytocompatibility as well as pro-coagulant activity and hemostasis. Therefore, our w-TAgel with strong adhesion and facile detachment is an advanced prospective dressing for wound closure and rapid hemostasis. The wet tissue adhesion and water-driven detachable mechanism may shed new light on the development of on-demand noninvasively detachable wet tissue adhesives.
Collapse
Affiliation(s)
- Hongjian Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Renfeng Xu
- College of Life Science, Fujian Normal University, Fujian, 350007, China
| | - Peng Ni
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Zhenghong Zhang
- College of Life Science, Fujian Normal University, Fujian, 350007, China
- Corresponding author.
| | - Caixia Sun
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Huaying He
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Xinyue Wang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Lidan Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Ziyi Liang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Haiqing Liu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
- Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian, 350007, China
- Corresponding author. Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China.
| |
Collapse
|
2
|
Cai S, Cao G, Chen Y, Zhang H, Jiang C, Tian Y. High-performance electrically conductive adhesives with aluminum-doped zinc oxide (AZO) for various flexible electronic devices. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|