1
|
Corrente NJ, Neimark AV. From slit pores to 3D frameworks: Advances in molecular modeling of adsorption in nanoporous carbons. Adv Colloid Interface Sci 2025; 342:103502. [PMID: 40239421 DOI: 10.1016/j.cis.2025.103502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025]
Abstract
Recent advances in computational capabilities have revolutionized the modeling of nanoporous carbons, enabling a transition from idealized pore descriptions to versatile three-dimensional molecular models. This review traces the evolution from traditional continuous potential methods and simple pore models to modern simulation techniques that generate realistic carbon structures incorporating surface heterogeneity, pore connectivity, and framework flexibility. We examine various approaches including Hybrid Reverse Monte Carlo, Quench Molecular Dynamics, and Annealed Molecular Dynamics methods, discussing their respective strengths and limitations. Particular attention is given to the choice of interatomic potentials and their impact on structural predictions. The development of million-atom models captures long-range ordering effects previously inaccessible to simulation. Applications of the 3D models demonstrate their ability to quantitatively predict adsorption behavior and provide the improved characterization of practical carbons using novel methods such as 3D-VIS and APDM. Recent hybrid MD/MC approaches, which incorporate the effects of structure flexibility, offer new insights into adsorbate-induced structural changes. This review highlights how advancing computational methods are bridging the gap between molecular-level understanding and practical applications in the carbon materials design and modeling of adsorption processes.
Collapse
Affiliation(s)
- Nicholas J Corrente
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Alexander V Neimark
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| |
Collapse
|
2
|
Zhong ZL, Li HP, Yuan W, Wang Y, Zhai QG. Topology-Oriented Assembly of Iron-2,5-Furandicarboxylate Coordination Cubes for Highly Selective CO 2/SF 6/N 2 Capture. Inorg Chem 2025; 64:5789-5799. [PMID: 40066725 DOI: 10.1021/acs.inorgchem.5c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
As typical greenhouse gases, selective capture of CO2 (carbon dioxide) and SF6 (sulfur hexafluoride) is of great importance. Herein, on the basis of a typical six-connected pcu topology, three isomorphic Fe-2,5-furandicarboxylate (Fe-FDC) metal-organic framework (MOF) adsorbents (SNNU-133-135) were successfully prepared via a rational assembly of {[Fe3O]8(FDC)12} cubic building blocks. With dihedral angles in Fe-FDC cubes varying from 80° (SNNU-133), 87° (SNNU-134), to 90°(SNNU-135), three MOF isomers show step-by-step enhancement of selective CO2 and SF6 capture performance. For SNNU-135, at 298 K and 1 bar, the adsorption capacities for CO2 and SF6 are 83.6 and 66.7 cm3/g, and the CO2/N2 and SF6/N2 selectivity values are up to 29.4 and 509.1, respectively. Furthermore, the practical breakthrough interval time of SNNU-135 can reach 75 and 185 min g-1 (298 K, 1 bar, 1 mL min-1, CO2/N2 = 15:85 and SF6/N2 = 10:90) with the captured CO2 and SF6 amounts of 1.24 and 2.34 mmol/g, and the SF6 purity greater than 99.9%. The most regular Fe-FDC cubes, all available Fe-OMSs together with multiple weak interactions, cause SNNU-135 to have the highest CO2 and SF6 adsorption capacity, best CO2/N2 and SF6/N2 selectivity performance, and one-step separation ability for CO2/SF6/N2 ternary mixtures.
Collapse
Affiliation(s)
- Zhang-Lei Zhong
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Hai-Peng Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Wenyu Yuan
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Ying Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|
3
|
Li YP, Ni JJ, Zhang XJ, Zhang XL, Wen W, Sui ZY, Xu XF. Pore Environmental Modification by Amino Groups in Robust Microporous MOFs for SF 6 Capturing and SF 6/N 2 Separation. Inorg Chem 2024; 63:13568-13575. [PMID: 38973105 DOI: 10.1021/acs.inorgchem.4c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Capturing and separating the greenhouse gas SF6 from nitrogen N2 have significant greenhouse mitigation potential and economic benefits. We used a pore engineering strategy to manipulate the pore environment of the metal-organic framework (MOF) by incorporating organic functional groups (-NH2). This resulted in an enhanced adsorption of SF6 and separation of the SF6/N2 mixture in the MOF. The introduction of amino (-NH2) groups into YTU-29 resulted in a reduction of the Brunauer-Emmett-Teller surface but an increase in interactions with SF6 within the confined pores. Water-stable YTU-29-NH2 showed a significantly higher SF6 uptake (95.5 cm3/g) than YTU-29 (77.4 cm3/g). The results of the breakthrough experiments show that YTU-29-NH2 has a significantly improved separation performance for SF6/N2 mixtures, with a high SF6 capture of 0.88 mmol/g compared to 0.56 mmol/g by YTU-29. This improvement is due to the suitable pore confinement and accessible -NH2 groups on pore surfaces. Considering its excellent regeneration ability and cycling performance, ultrastable YTU-29-NH2 demonstrates great potential for SF6 capturing and SF6/N2 separation.
Collapse
Affiliation(s)
- Yong-Peng Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jing-Jing Ni
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiao-Jie Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiao-Long Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wen Wen
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Zhu-Yin Sui
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiu-Feng Xu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
4
|
Xin R, Wang C, Zhang Y, Peng R, Li R, Wang J, Mao Y, Zhu X, Zhu W, Kim M, Nam HN, Yamauchi Y. Efficient Removal of Greenhouse Gases: Machine Learning-Assisted Exploration of Metal-Organic Framework Space. ACS NANO 2024. [PMID: 38951518 DOI: 10.1021/acsnano.4c04174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Global warming is a crisis that humanity must face together. With greenhouse gases (GHGs) as the main factor causing global warming, the adoption of relevant processes to eliminate them is essential. With the advantages of high specific surface area, large pore volume, and tunable synthesis, metal-organic frameworks (MOFs) have attracted much attention in GHG storage, adsorption, separation, and catalysis. However, as the pool of MOFs expands rapidly with new syntheses and discoveries, finding a suitable MOF for a particular application is highly challenging. In this regard, high-throughput computational screening is considered the most effective research method for screening a large number of materials to discover high-performance target MOFs. Typically, high-throughput computational screening generates voluminous and multidimensional data, which is well suited for machine learning (ML) training to improve the screening efficiency and explore the relationships between the multidimensional data in depth. This Review summarizes the general process and common methods for using ML to screen MOFs in the field of GHG removal. It also addresses the challenges faced by ML in exploring the MOF space and potential directions for the future development of ML for MOF screening. This aims to enhance the understanding of the integration of ML and MOFs in various fields and broaden the application and development ideas of MOFs.
Collapse
Affiliation(s)
- Ruiqi Xin
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Chaohai Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Yingchao Zhang
- School of Civil Engineering and Transportation, North China University of Water Resources and Electric Power, Zhengzhou 450000, China
| | - Rongfu Peng
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Rui Li
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Junning Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Yanli Mao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Xinfeng Zhu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Wenkai Zhu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Minjun Kim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ho Ngoc Nam
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, South Korea
| |
Collapse
|
5
|
Miao X, Sui J, Weng S, Zhang J, Zhao H, Wei Y, Shi J, Zhao Y, Cai J, Xiao L, Hou L. Construction of Hierarchical Porous UiO-66-Br 2@PS/DVB-Packed Columns by High Internal Phase Emulsion Strategy for Enhanced Separation of CF 4/N 2 and SF 6/N 2. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38669622 DOI: 10.1021/acsami.4c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Recovery and separation of anthropogenic emissions of electronic specialty gases (F-gases, such as CF4 and SF6) from the semiconductor sector are of critical importance. In this work, the hierarchical porous UiO-66-Br2@PS/DVB-packed column was constructed by a high internal phase emulsions strategy. UiO-66-Br2@PS/DVB exhibits a superior selectivity of CF4/N2 (2.67) and SF6/N2 (3.34) predicted by the IAST due to the diffusion limitation in the micropore and the gas-framework affinity. Especially, UiO-66-Br2@PS/DVB showed significant CF4 and SF6 retention and enabled the successful separation of CF4/N2 and SF6/N2 with a resolution of 2.37 and 8.89, respectively, when used as a packed column in gas chromatography. Compared with the Porapak Q column, the HETP of the UiO-66-Br2@PS/DVB-packed column decreased and showed good reproducibility. This research not only offers a convenient method for fabricating a hierarchical porous MOF-packed column but also showcases the prospective utilization of MOFs for the separation of the F-gas/N2 mixture.
Collapse
Affiliation(s)
- Xiaoyu Miao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jincheng Sui
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Sen Weng
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jian Zhang
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Hao Zhao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yifeng Wei
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Junjie Shi
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yulai Zhao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jingyu Cai
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Longqiang Xiao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
6
|
Zhang HD, Li XD, Xie YY, Yang PH, Yu JX. High throughput screening of pure silica zeolites for CF 4 capture from electronics industry gas. Phys Chem Chem Phys 2024; 26:11570-11581. [PMID: 38533820 DOI: 10.1039/d4cp00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The capture and separation of CF4 from CF4/N2 mixture gas is a crucial issue in the electronics industry, as CF4 is a commonly used etching gas and the ratio of CF4 to N2 directly affects process efficiency. Utilizing high-throughput computational screening techniques and grand canonical Monte Carlo (GCMC) simulations, we comprehensively screened and assessed 247 types of pure silicon zeolite materials to determine their adsorption and separation performance for CF4/N2 mixtures. Based on screening, the relationships between the structural parameters and adsorption and separation properties were meticulously investigated. Four indicators including adsorption selectivity, working capacity, adsorbent performance score (APS), and regenerability (R%) were used to evaluate the performance of adsorbents. Based on the evaluation, we selected the top three best-performing zeolite structures for vacuum swing adsorption (LEV, AWW and ESV) and pressure swing adsorption (AVL, ZON, and ERI) processes respectively. Also, we studied the preferable adsorption sites of CF4 and N2 in the selected zeolite structures through centroid density distributions at the molecule level. We expect the study may provide some valuable guidance for subsequent experimental investigations on adsorption and separation of CF4/N2.
Collapse
Affiliation(s)
- Hui-Dong Zhang
- College of Science, Henan University of Technology, Zhengzhou 450001, China.
| | - Xiao-Dong Li
- College of Science, Henan University of Technology, Zhengzhou 450001, China.
| | - Yan-Yu Xie
- College of Science, Henan University of Technology, Zhengzhou 450001, China.
| | - Peng-Hui Yang
- College of Science, Henan University of Technology, Zhengzhou 450001, China.
| | - Jing-Xin Yu
- College of Science, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Cui Z, Li Y, Xiao S, Tian S, Tang J, Hao Y, Zhang X. Recent progresses, challenges and proposals on SF 6 emission reduction approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167347. [PMID: 37774865 DOI: 10.1016/j.scitotenv.2023.167347] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
The increasing utilization and emission of sulfur hexafluoride (SF6) pose severe threats to the climate and the environment, owing to its potent greenhouse gas properties. In this paper, we comprehensively review the recent progresses of SF6 emission reduction approaches. Currently, the use and emission of SF6 are still on the rise, and mainly concentrated in the power industry. Restrictive use and emission reduction policies are fundamental step in guiding SF6 emission, but they are poor promoted in developing economies. More specific policies and regulations are needed in conjunction with timely and accurate assessments of SF6 atmospheric properties and emissions. SF6 recovery is the direct emission reduction approach, but defects in recovery methods and equipment limit its applications. The development of SF6 purification technologies and optimizations in recovery devices and processes are needed for its treatment of different regions and SF6 volumes. SF6 degradation is the final step of waste gas treatment, and its development needs to better balance the degradation rate and product selectivity, as well as to improve their multi-scenario responsiveness. SF6 substitution is a necessity for future large-scale SF6 emission reduction. Improvements in SF6-free applications and its long-term stability are critical via new gas design, gas mixture optimization and equipment updates. Finally, all the emission reduction approaches are closely related, and promoting their synergistic development and complementarity is the ultimate way to realize SF6 lifecycle management.
Collapse
Affiliation(s)
- Zhaolun Cui
- School of Electric Power Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Yi Li
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, People's Republic of China
| | - Song Xiao
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, People's Republic of China
| | - Shuanngshuang Tian
- Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Ju Tang
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, People's Republic of China
| | - Yanpeng Hao
- School of Electric Power Engineering, South China University of Technology, Guangzhou, People's Republic of China.
| | - Xiaoxing Zhang
- Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, People's Republic of China.
| |
Collapse
|
8
|
Gao P, Wang Z, Liu L, Cheng S, Li G. Efficient CF4 adsorption on porous carbon derived from polyaniline. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Wang J, Deng S, Zhao R, Xue J, Bai Y, Wu Z. Performance evaluation and optimization of vacuum pressure swing adsorption cycle for CF4 recovery using activated carbon. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Wu Y, Yan T, Zhang W, Chen S, Fu Y, Zhang Z, Ma H. Adsorption Interface-Induced H...F Charge Transfer in Ultramicroporous Metal–Organic Frameworks for Perfluorinated Gas Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue Wu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Tong Yan
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Wenxiang Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Shuhui Chen
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yu Fu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Zhonghui Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Heping Ma
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
11
|
Tian K, Elbert SM, Hu XY, Kirschbaum T, Zhang WS, Rominger F, Schröder RR, Mastalerz M. Highly Selective Adsorption of Perfluorinated Greenhouse Gases by Porous Organic Cages. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202290. [PMID: 35657163 DOI: 10.1002/adma.202202290] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic greenhouse gases contribute to global warming. Among those gases, perfluorocarbons (PFCs) are thousands to tens of thousands of times more harmful to the environment than comparable amounts of carbon dioxide. To date, materials that selectively adsorb perfluorocarbons in favor of other less harmful gases have not been reported. Here, a series of porous organic cage compounds with alkyl-, fluoroalkyl-, and partially fluorinated alkyl groups is presented. Their isomorphic crystalline states allow the study of the structure-property relationship between the degree of fluorination of the alkyl chains and the gas sorption properties for PFCs and their selective uptakes in comparison to other, nonfluorinated gases. By this approach, one compound having superior selectivities of PFCs versus N2 or CO2 under ambient conditions is identified.
Collapse
Affiliation(s)
- Ke Tian
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Sven M Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Xin-Yue Hu
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Tobias Kirschbaum
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Wen-Shan Zhang
- Institute for Molecular Systems Engineering and Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Rasmus R Schröder
- Institute for Molecular Systems Engineering and Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
12
|
Enhancing Perfluorinated electron specialty gases separation selectivity in ultra-microporous metal organic framework. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Fluorinated porous organic polymers for efficient recovery perfluorinated electronic specialty gas from exhaust gas of plasma etching. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Skarmoutsos I, Koukaras EN, Klontzas E. CF 4 Capture and Separation of CF 4-SF 6 and CF 4-N 2 Fluid Mixtures Using Selected Carbon Nanoporous Materials and Metal-Organic Frameworks: A Computational Study. ACS OMEGA 2022; 7:6691-6699. [PMID: 35252664 PMCID: PMC8892479 DOI: 10.1021/acsomega.1c06167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The adsorption of pure fluid carbon tetrafluoride and the separation of CF4-SF6 and CF4-N2 fluid mixtures using representative nanoporous materials have been investigated by employing Monte Carlo and molecular dynamics simulation techniques. The selected materials under study were the three-dimensional carbon nanotube networks, pillared graphene using carbon nanotube pillars, and the SIFSIX-2-Cu metal-organic framework. The selection of these materials was based on their previously reported efficiency to separate fluid SF6-N2 mixtures. The pressure dependence of the thermodynamic and kinetic separation selectivity for the CF4-SF6 and CF4-N2 fluid mixtures has therefore been investigated, to provide deeper insights into the molecular scale phenomena taking place in the investigated nanoporous materials. The results obtained have revealed that under near-ambient pressure conditions, the carbon-based nanoporous materials exhibit a higher gravimetric fluid uptake and thermodynamic separation selectivity. The SIFSIX-2-Cu material exhibits a slightly higher kinetic selectivity at ambient and high pressures.
Collapse
Affiliation(s)
- Ioannis Skarmoutsos
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, Vas. Constantinou 48, GR-116 35 Athens, Greece
- Laboratory
of Quantum and Computational Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Emmanuel N. Koukaras
- Laboratory
of Quantum and Computational Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Emmanuel Klontzas
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, Vas. Constantinou 48, GR-116 35 Athens, Greece
| |
Collapse
|
15
|
Zhang W, Wu Y, Li Y, Chen S, Fu Y, Zhang Z, Yan T, Wang S, Ma H. Fluorine-functionalized Porous Organic Polymers for Durable F-gas Capture from Semiconductor Etching Exhaust. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenxiang Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yue Wu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yinhui Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Shuhui Chen
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yu Fu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Zhonghui Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Tong Yan
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Shanshan Wang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Heping Ma
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
16
|
Pan R, Dong W, Guo Y, Tang Y, Shang J, Zhou L, He D. The adsorption mechanism of CF 4 on the surface of activated carbon made from peat and modified by Cu. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12075-12084. [PMID: 34561796 DOI: 10.1007/s11356-021-16210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
In order to find a way to deal with CF4 with good removal effect and easy to promote. In this study, peat was used as raw material, and copper-loaded activated carbon (Cu/AC) was successfully prepared through nitric acid oxidation and copper chloride impregnation. Compared with commercial activated carbon and widely used metal organic frameworks (MOFs), it shows a fast adsorption rate and larger adsorption capacity for CF4. The static experiment was used to study the influence of Cu/AC on the adsorption of CF4 in the adsorbent dosage, reaction time, temperature, and initial concentration. SEM, FTIR, XPS, XRF, and BET were used to study the changes of physical and chemical properties before and after the adsorption. It was found that the oxygen-containing group was consumed during this process. Unsaturated sites on Cu can accelerate the adsorption of CF4, and the adsorption process is reversible. For the first time, the kinetic model, adsorption isotherm, and thermodynamic model are used to analyze the adsorption mechanism of CF4 on the Cu/AC surface from different angles. The results show that the adsorption of CF4 on the Cu/AC surface is a process of exothermic entropy reduction. The static adsorption process conforms to the pseudo-first-order, the pseudo-second-order, and the Freundlish adsorption model. Through 5 adsorption and desorption processes, it is found that Cu/AC has excellent recycling and recyclability performance.
Collapse
Affiliation(s)
- Rong Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wei Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yanni Guo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yining Tang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jun Shang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lei Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Deliang He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
17
|
Tian J, Qiao F, Hou Y, Tian B, Yang J. Exploring space-energy matching via quantum-molecular mechanics modeling and breakage dynamics-energy dissipation via microhydrodynamic modeling to improve the screening efficiency of nanosuspension prepared by wet media milling. Expert Opin Drug Deliv 2021; 18:1643-1657. [PMID: 34382869 DOI: 10.1080/17425247.2021.1967928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: The preparation of nanosuspensions by wet media milling is a promising technique that increases the bioavailability of insoluble drugs. The nanosuspension is thermodynamically unstable, where its stability might be influenced by the interaction energy between the stabilizers and the drugs after milling at a specific collision energy. However, it is difficult to screen the stabilizers and the parameters of milling accurately and quickly by using traditional analysis methods. Quantum-molecular mechanics and microhydrodynamic modeling can be applied to improve screening efficiency.Areas covered: Quantum-molecular mechanics model, which includes molecular docking, molecular dynamics simulations, and data on binding energy, provides insights into screening stabilizers based on their molecular behavior at the atomic level. The microhydrodynamic model explores the mechanical processes and energy dissipation in nanomilling, and even combines information on the mechanical modulus and an energy vector diagram for the milling parameters screening of drug crystals.Expert opinion: These modeling methods improve screening efficiency and support screening theories based on thermodynamics and physical dynamics. However, how to reasonably combine different modeling methods with their theoretical characteristics and further multidimensional and cross-scale simulations of nanosuspension formation remain challenges.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, P R China
| | - Fangxia Qiao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, P R China
| | - Yanhui Hou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, P R China
| | - Bin Tian
- Department of Pharmaceutical Sciences, School of Food and Biological Engineering, Shanxi University of Science and Technology, Weiyang University Park, Xi'an, P R China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, P R China
| |
Collapse
|