1
|
Sun G, Gao R, Jiao H, Luo D, Wang Y, Zhang Z, Lu W, Feng M, Chen Z. Self-Formation CoO Nanodots Catalyst in Co(TFSI) 2 -Modified Electrolyte for High Efficient Li-O 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201838. [PMID: 35900280 DOI: 10.1002/adma.202201838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The major challenges for Li-O2 batteries are sluggish reaction kinetics and large overpotentials due to the cathode passivation resulting from insulative and insoluble Li2 O2 . Here, a novel nanodot (ND)-modified electrolyte is designed by employing cobalt bis(trifluoromethylsulfonyl)imide (Co(TFSI)2 ) as an electrolyte additive. The Co(TFSI)2 additive can react with discharge intermediate LiO2 and product Li2 O2 to form CoO NDs. The generated CoO NDs are well dispersed in electrolyte, which integrates both the high catalytic activity of solid catalyst and the good wettability of soluble catalyst. Under the catalytis of CoO NDs, Li2 O2 is produced and deposits on the cathode together with them. At the recharge process, these well dispersed CoO NDs help to decompose solid Li2 O2 at a lower overpotential. The Li-O2 cells with Co(TFSI)2 exhibit a long cycle life of 200 cycles at a current density of 200 mA g-1 under a cutoff capacity of 1000 mAh g-1 , as well as a superior reversibility associated with the Li2 O2 formation and decomposition. The study is expected to broaden the range of electrolyte additives and provide a new view to developing highly dispersed NDs-based catalysts for Li-O2 batteries.
Collapse
Affiliation(s)
- Guiru Sun
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Rui Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Hailiang Jiao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Dan Luo
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Yan Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Zexu Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Wei Lu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
| | - Zhongwei Chen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
2
|
Wu Z, Tian Y, Chen H, Wang L, Qian S, Wu T, Zhang S, Lu J. Evolving aprotic Li-air batteries. Chem Soc Rev 2022; 51:8045-8101. [PMID: 36047454 DOI: 10.1039/d2cs00003b] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lithium-air batteries (LABs) have attracted tremendous attention since the proposal of the LAB concept in 1996 because LABs have a super high theoretical/practical specific energy and an infinite supply of redox-active materials, and are environment-friendly. However, due to the lack of critical electrode materials and a thorough understanding of the chemistry of LABs, the development of LABs entered a germination period before 2010, when LABs research mainly focused on the development of air cathodes and carbonate-based electrolytes. In the growing period, i.e., from 2010 to the present, the investigation focused more on systematic electrode design, fabrication, and modification, as well as the comprehensive selection of electrolyte components. Nevertheless, over the past 25 years, the development of LABs has been full of retrospective steps and breakthroughs. In this review, the evolution of LABs is illustrated along with the constantly emerging design, fabrication, modification, and optimization strategies. At the end, perspectives and strategies are put forward for the development of future LABs and even other metal-air batteries.
Collapse
Affiliation(s)
- Zhenzhen Wu
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Yuhui Tian
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Hao Chen
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. .,Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Shangshu Qian
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Tianpin Wu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Shanqing Zhang
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
3
|
Kim J, Jeong J, Jung GY, Lee J, Lee JE, Baek K, Kang SJ, Kwak SK, Hwang C, Song HK. Amphi-Active Superoxide-Solvating Charge Redox Mediator for Highly Stable Lithium-Oxygen Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40793-40800. [PMID: 36044267 DOI: 10.1021/acsami.2c07400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A multifunctional electrolyte additive for lithium oxygen batteries (LOBs) was designed to have (1) a redox-active moiety to mediate decomposition of lithium peroxide (Li2O2 as the final discharge product) during charging and (2) a solvent moiety to solvate and stabilize lithium superoxide (LiO2 as the intermediate discharge product) in electrolyte during discharging. 4-Acetamido-TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidin-1-yl)oxyl) or AAT was employed as the additive working for both charge and discharge processes (amphi-active). The redox-active moiety was rooted in TEMPO, while the acetamido (AA) functional group inherited the high donor number (DN) of N,N-dimethylacetamide (DMAc). Integrating two functional moieties (TEMPO and AA) into a single molecule resulted in the bifunctionality of AAT (1) facilitating Li2O2 decomposition by the TEMPO moiety and (2) encouraging the solvent mechanism of Li2O2 formation by the high-DN AA moiety. Significantly improved LOB performances were achieved by the superoxide-solvating charge redox mediator, which were not obtained by a simple cocktail of TEMPO and DMAc.
Collapse
Affiliation(s)
- Jonghak Kim
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Korea
| | - Jinhyeon Jeong
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Korea
| | - Gwan Yeong Jung
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130 United States
| | - Jeongin Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Korea
| | - Ji Eun Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Korea
| | - Kyungeun Baek
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Korea
| | - Seok Ju Kang
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Korea
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Korea
| | - Chihyun Hwang
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Korea
| | - Hyun-Kon Song
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Korea
| |
Collapse
|
4
|
Dou Y, Kan D, Su Y, Zhang Y, Wei Y, Zhang Z, Zhou Z. Critical Factors Affecting the Catalytic Activity of Redox Mediators on Li-O 2 Battery Discharge. J Phys Chem Lett 2022; 13:7081-7086. [PMID: 35900208 DOI: 10.1021/acs.jpclett.2c01818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Redox mediators (RMs) have a substantial ability to govern oxygen reduction reaction (ORR) in Li-O2 batteries, which can realize large capacity and high-rate capability. However, studies on understanding RM-assisted ORR mechanisms are still in their infancy. Herein, a quinone-based molecule, vitamin K1 (VK1), is first used as the ORR RM for Li-O2 batteries, together with 2,5-di-tert-butyl-1,4-benzoquinone (DBBQ), to elucidate key factors on the catalytic activity of RMs. By combining experiments and first-principle computations, we demonstrate that the reduced VK1 has strong oxygen affinity and can effectively retard the deposition of Li2O2 films on the electrode surface, thereby guaranteeing enough active sites for electron transfer. Besides, the low reaction free energy of disproportionation of the Li(VK1)O2 intermediate into Li2O2 also significantly accelerates the ORR process. Consequently, the catalytic activity of VK1 is significantly boosted, and the discharge capacity of VK1-assisted batteries is 3.2-4.5 times that of DBBQ-assisted batteries. This study provides new insight for better understanding the working roles of RMs in Li-O2 batteries.
Collapse
Affiliation(s)
- Yaying Dou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dongxiao Kan
- Advanced Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, Xi'an, Shanxi 710016, China
| | - Yuwei Su
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
| | - Yantao Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Yingjin Wei
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, Jilin 130012, China
| | - Zhang Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhen Zhou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
5
|
Kim J, Lee J, Jeong J, Hwang C, Song HK. Shifting Target Reaction from Oxygen Reduction to Superoxide Disproportionation by Tuning Isomeric Configuration of Quinone Derivative as Redox Mediator for Lithium-Oxygen Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9066-9072. [PMID: 35132850 DOI: 10.1021/acsami.1c22621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quinones having a fully conjugated cyclic dione structure have been used as redox mediators in electrochemistry. 2,5-Ditert-butyl-1,4-benzoquinone (DBBQ or DB-p-BQ) as a para-quinone derivative is one of the representative discharge redox mediators for facilitating the oxygen reduction reaction (ORR) kinetics in lithium-oxygen batteries (LOBs). Herein, we presented that the redox activity of DB-p-BQ for electron mediation was possibly used for facilitating superoxide disproportionation reaction (SODR) by tuning the isomeric configuration of the carbonyl groups of the substituted quinone to change its reduction potentials. First, we expected a molecule having its reduction potential between oxygen/superoxide at 2.75 V versus Li/Li+ and superoxide/peroxide at 3.17 V to play a role of the SODR catalyst by transferring an electron from one superoxide (O2-) to another superoxide to generate dioxygen (O2) and peroxide (O22-). By changing the isomeric configuration from para (DB-p-BQ) to ortho (DB-o-BQ), the reduction potential of the first electron transfer (Q/Q-) of the ditert-butyl benzoquinone shifted positively to the potential range of the SODR catalyst. The electrocatalytic SODR-promoting functionality of DB-o-BQ kept the reactive superoxide concentration below a harmful level to suppress superoxide-triggered side reaction, improving the cycling durability of LOBs, which was not achieved by the para form. The second electron transfer process (Q-/ Q2-) of the DB-o-BQ, even if the same process of the para form was not used for facilitating ORR, played a role of mediating electrons between electrode and oxygen like the Q/Q- process of the para form. The ORR-promoting functionality of the ortho form increased the LOB discharge capacity and reduced the ORR overpotential.
Collapse
Affiliation(s)
- Jonghak Kim
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Jeongin Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Jinhyeon Jeong
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Chihyun Hwang
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Hyun-Kon Song
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| |
Collapse
|
6
|
Zhao Z, Zhang X, Zhou Z, Wang E, Peng Z. Direct In Situ Spectroscopic Evidence for Solution-Mediated Oxygen Reduction Reaction Intermediates in Aprotic Lithium-Oxygen Batteries. NANO LETTERS 2022; 22:501-507. [PMID: 34962821 DOI: 10.1021/acs.nanolett.1c04445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A fundamental understanding of the reaction process is essential to predict and enhance the performance of electrochemical devices. As a central reaction in aprotic lithium-oxygen (Li-O2) batteries, the oxygen reduction reaction (ORR) has been confronted with the "sudden-death" phenomenon caused by the cathode passivation from discharge product Li2O2. The soluble catalyst (e.g., reduction mediator) promoted solution-mediated ORR represents an elegant solution. However, no direct molecular evidence is available so far, and its link to Li-O2 batteries performance remains hypothetical. Here, we present in situ surface-enhanced Raman spectroscopy and obtain direct spectroscopic evidence (i.e., LiAQ and LiAQO2) of the solution-mediated ORR on a model anthraquinone (AQ, a typical reduction mediator)-immobilized Au electrode. With the assistance of density functional theory calculations and differential electrochemical mass spectrometry, the related elementary reaction steps of the solution-mediated ORR are proposed. This work provides intuitive insights into the AQ-catalyzed solution-mediated ORR mechanism that is helpful in the optimization and tailor-design of soluble catalysts for excellent next-generation Li-O2 batteries.
Collapse
Affiliation(s)
- Zhiwei Zhao
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Xu Zhang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhen Zhou
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zhangquan Peng
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, People's Republic of China
- Tianmu Lake Institute of Advanced Energy Storage Technologies Co. Ltd., Liyang 213300, People's Republic of China
| |
Collapse
|
7
|
Dou Y, Xie Z, Wei Y, Peng Z, Zhou Z. OUP accepted manuscript. Natl Sci Rev 2022; 9:nwac040. [PMID: 35548381 PMCID: PMC9084180 DOI: 10.1093/nsr/nwac040] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
Aprotic lithium–oxygen (Li–O2) batteries are receiving intense research interest by virtue of their ultra-high theoretical specific energy. However, current Li–O2 batteries are suffering from severe barriers, such as sluggish reaction kinetics and undesired parasitic reactions. Recently, molecular catalysts, i.e. redox mediators (RMs), have been explored to catalyse the oxygen electrochemistry in Li–O2 batteries and are regarded as an advanced solution. To fully unlock the capability of Li–O2 batteries, an in-depth understanding of the catalytic mechanisms of RMs is necessary. In this review, we summarize the working principles of RMs and their selection criteria, highlight the recent significant progress of RMs and discuss the critical scientific and technical challenges on the design of efficient RMs for next-generation Li–O2 batteries.
Collapse
Affiliation(s)
- Yaying Dou
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaojun Xie
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | | | | | | |
Collapse
|
8
|
Liu X, Song X, Guo Z, Bian T, Zhang J, Zhao Y. Biphasic Electrolyte Inhibiting the Shuttle Effect of Redox Molecules in Lithium‐Metal Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiao Liu
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Xiaosheng Song
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Zhijie Guo
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Tengfei Bian
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Jin Zhang
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| |
Collapse
|
9
|
Liu X, Song X, Guo Z, Bian T, Zhang J, Zhao Y. Biphasic Electrolyte Inhibiting the Shuttle Effect of Redox Molecules in Lithium-Metal Batteries. Angew Chem Int Ed Engl 2021; 60:16360-16365. [PMID: 34019317 DOI: 10.1002/anie.202104003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/11/2021] [Indexed: 11/11/2022]
Abstract
Redox molecules (RMs) as electron carriers have been widely used in electrochemical energy-storage devices (ESDs), such as lithium redox flow batteries and lithium-O2 batteries. Unfortunately, migration of RMs to the lithium (Li) anode leads to side reactions, resulting in reduced coulombic efficiency and early cell death. Our proof-of-concept study utilizes a biphasic organic electrolyte to resolve this issue, in which nonafluoro-1,1,2,2-tetrahydrohexyl-trimethoxysilane (NFTOS) and ether (or sulfone) with lithium bis(trifluoromethane)sulfonimide (LiTFSI) can be separated to form the immiscible anolyte and catholyte. RMs are extracted to the catholyte due to the enormous solubility coefficients in the biphasic electrolytes with high and low polarity, resulting in inhibition of the shuttle effect. When coupled with a lithium anode, the Li-Li symmetric, Li redox flow and Li-O2 batteries can achieve considerably prolonged cycle life with biphasic electrolytes. This concept provides a promising strategy to suppress the shuttle effect of RMs in ESDs.
Collapse
Affiliation(s)
- Xiao Liu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xiaosheng Song
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Zhijie Guo
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Tengfei Bian
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Jin Zhang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
10
|
Kang JH, Lee J, Jung JW, Park J, Jang T, Kim HS, Nam JS, Lim H, Yoon KR, Ryu WH, Kim ID, Byon HR. Lithium-Air Batteries: Air-Breathing Challenges and Perspective. ACS NANO 2020; 14:14549-14578. [PMID: 33146514 DOI: 10.1021/acsnano.0c07907] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lithium-oxygen (Li-O2) batteries have been intensively investigated in recent decades for their utilization in electric vehicles. The intrinsic challenges arising from O2 (electro)chemistry have been mitigated by developing various types of catalysts, porous electrode materials, and stable electrolyte solutions. At the next stage, we face the need to reform batteries by substituting pure O2 gas with air from Earth's atmosphere. Thus, the key emerging challenges of Li-air batteries, which are related to the selective filtration of O2 gas from air and the suppression of undesired reactions with other constituents in air, such as N2, water vapor (H2O), and carbon dioxide (CO2), should be properly addressed. In this review, we discuss all key aspects for developing Li-air batteries that are optimized for operating in ambient air and highlight the crucial considerations and perspectives for future air-breathing batteries.
Collapse
Affiliation(s)
- Jin-Hyuk Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jiyoung Lee
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji-Won Jung
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jiwon Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Taegyu Jang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyun-Soo Kim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Jong-Seok Nam
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Haeseong Lim
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki Ro Yoon
- Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), 143 Hanggaul-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Won-Hee Ryu
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hye Ryung Byon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|