1
|
Tsuji A, Kobayashi T, Murata J. Soft Copper Nanoimprinting via Solid-State Electrochemical Etching for Flexible Optoelectronics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21929-21939. [PMID: 40012501 DOI: 10.1021/acsami.4c20732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Patterned Cu is widely used for various electronic components, including metal interconnects. In the optoelectronic industry, high-resolution nanopatterning of Cu surfaces is commonly performed via photolithography, which requires photoresists and harsh chemicals. In this study, we developed a method for fabricating Cu nanopatterns based on solid-state electrochemical etching at the interface between a polymer electrolyte membrane (PEM) and Cu. The electrochemical reaction selectively ionized the Cu surface in contact with a patterned PEM stamp, allowing direct Cu patterning without using resists or harsh chemicals. This approach was successfully applied to produce patterns with resolutions of less than 100 nm and hierarchical structures. Such high-resolution metal patterns at the subwavelength scale (several hundred nanometers) enable the miniaturization of electrical circuits and the tuning of optical transmission/reflection spectra to enhance device surfaces. Semitransparent electrodes fabricated using nanopatterned Cu on poly(ethylene terephthalate) films exhibited good optical transmission and electrical resistance properties. The proposed PEM stamp-based solid-state electrochemical etching technique avoids the need for liquid electrolytes and resists, thereby offering a simple, low-cost, and environmentally friendly process for the direct nanopatterning of Cu.
Collapse
Affiliation(s)
- Atsuki Tsuji
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Taizo Kobayashi
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Junji Murata
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
2
|
Lai Y, Xiao X, Huang Z, Duan H, Yang L, Yang Y, Li C, Feng L. Photocrosslinkable Biomaterials for 3D Bioprinting: Mechanisms, Recent Advances, and Future Prospects. Int J Mol Sci 2024; 25:12567. [PMID: 39684279 DOI: 10.3390/ijms252312567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Constructing scaffolds with the desired structures and functions is one of the main goals of tissue engineering. Three-dimensional (3D) bioprinting is a promising technology that enables the personalized fabrication of devices with regulated biological and mechanical characteristics similar to natural tissues/organs. To date, 3D bioprinting has been widely explored for biomedical applications like tissue engineering, drug delivery, drug screening, and in vitro disease model construction. Among different bioinks, photocrosslinkable bioinks have emerged as a powerful choice for the advanced fabrication of 3D devices, with fast crosslinking speed, high resolution, and great print fidelity. The photocrosslinkable biomaterials used for light-based 3D printing play a pivotal role in the fabrication of functional constructs. Herein, this review outlines the general 3D bioprinting approaches related to photocrosslinkable biomaterials, including extrusion-based printing, inkjet printing, stereolithography printing, and laser-assisted printing. Further, the mechanisms, advantages, and limitations of photopolymerization and photoinitiators are discussed. Next, recent advances in natural and synthetic photocrosslinkable biomaterials used for 3D bioprinting are highlighted. Finally, the challenges and future perspectives of photocrosslinkable bioinks and bioprinting approaches are envisaged.
Collapse
Affiliation(s)
- Yushang Lai
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiong Xiao
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziwei Huang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongying Duan
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liping Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchu Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenxi Li
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Feng
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Chang H, Sun Y, Lu S, Lan Y. Enhancing Brain-Computer Interfaces through Kriging-Based Fusion of Sparse Regression Partial Differential Equations to Counter Injection Molding View of Node Displacement Effects. Polymers (Basel) 2024; 16:2507. [PMID: 39274138 PMCID: PMC11398258 DOI: 10.3390/polym16172507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Injection molding is an efficient and precise manufacturing technology that is widely used in the production of plastic products. In recent years, injection molding technology has made significant progress, especially with the combination of in-mold electronics (IME) technology, which makes it possible to embed electronic components directly into the surface of a product. IME technology improves the integration and performance of a product by embedding conductive materials and functional components in the mold. Brain-computer interfaces (BCIs) are a rapidly growing field of research that aims to capture, analyze, and feedback brain signals by directly connecting the brain to external devices. The Utah array, a high-density microelectrode array, has been widely used for the recording and transmission of brain signals. However, the traditional fabrication method of the Utah array suffers from high cost and low integration, which limits its promotion in practical applications. The lines that receive EEG signals are one of the key parts of a brain-computer interface system. The optimization of injection molding parameters is particularly important in order to effectively embed these lines into thin films and to ensure the precise displacement of the line nodes and the stability of signal transmission during the injection molding process. In this study, a method based on the Kriging prediction model and sparse regression partial differential equations (PDEs) is proposed to optimize the key parameters in the injection molding process. This method can effectively predict and control the displacement of nodes in the film, ensure the stability and reliability of the line during the injection process, and improve the accuracy of EEG signal transmission and system performance. The optimal injection parameters were finally obtained: a holding pressure of 525 MPa, a holding time of 50 s, and a melting temperature of 285 °C. Under this condition, the average node displacement of UA was reduced from the initial 0.19 mm to 0.89 µm, with an optimization rate of 95.32%.
Collapse
Affiliation(s)
- Hanjui Chang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Yue Sun
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Shuzhou Lu
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Yuntao Lan
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| |
Collapse
|
4
|
Jeong S, Yoon H, Michalek LF, Kim G, Kim J, Seo J, Kim D, Park H, Lee B, Hong Y. Printable, stretchable metal-vapor-desorption layers for high-fidelity patterning in soft, freeform electronics. Nat Commun 2024; 15:7209. [PMID: 39174549 PMCID: PMC11341687 DOI: 10.1038/s41467-024-51585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
High-fidelity patterning of thin metal films on arbitrary soft substrates promises integrated circuits and devices that can significantly augment the morphological functionalities of freeform electronics. However, existing patterning methods that decisively rely on prefabricated rigid masks are severely incompatible with myriad surfaces. Here, we report printable, stretchable metal-vapor-desorption layers (s-MVDLs) that can enable high-fidelity patterning of thin metal films on freeform polymeric surfaces. The printed rubbery matrix with highly mobile chains effectively repels various metal vapors from the surface and inhibits their condensation, thereby allowing selective metal deposition. The s-MVDLs are printed by direct ink writing techniques, enabling customizable and scalable thin metal patterns ranging from the micrometer to millimeter scale with high fidelity. Furthermore, the superior stretchability and mechanical robustness of the s-MVDLs allow highly compliant deformation along the substrates, enabling the construction of unconventional circuits and devices on multi-curvature, non-developable, and stretchable surfaces.
Collapse
Affiliation(s)
- Sujin Jeong
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul, 08826, Korea
| | - Hyungsoo Yoon
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul, 08826, Korea
| | - Lukas Felix Michalek
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Geonhee Kim
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul, 08826, Korea
| | - Jinhyoung Kim
- Smart Sensor Research Center, Korea Electronics Technology Institute (KETI), Seongnam, 13509, Korea
| | - Jiseok Seo
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul, 08826, Korea
| | - Dahyun Kim
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul, 08826, Korea
| | - Hwaeun Park
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul, 08826, Korea
| | - Byeongmoon Lee
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea.
| | - Yongtaek Hong
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
5
|
Wang H, Ye D, Li A, Zhang B, Guo W, Wang B, Wang Z, Wu Q, Zhao C, Zhang GJ, Huang Y. Self-Driven, Monopolar Electrohydrodynamic Printing via Dielectric Nanoparticle Layer. NANO LETTERS 2024; 24:9511-9519. [PMID: 39042397 DOI: 10.1021/acs.nanolett.4c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Electrohydrodynamic printing holds both ultrahigh-resolution fabrication capability and unmatched ink-viscosity compatibility yet fails on highly insulating thick/irregular substrates. Herein, we proposed a single-potential driven electrohydrodynamic printing process with submicrometer resolution on arbitrary nonconductive targets, regardless of their geometric shape or sizes, via precoating with an ultrathin dielectric nanoparticle layer. Benefiting from the favorable Maxwell-Wagner polarization, the reversely polarized spot brought about a significant drop (∼57% for ceramics) in the operation voltage as its induced electric field and a negligible residual charge accumulation. Thus, ordered micro/nanostructures with line widths down to 300 nm were directly written at a stage speed as low as 5 mm/s, and silver features with width of ∼2 μm or interval of ∼4 μm were achieved on insulating substrates separately. Flexible sensors and curved heaters were then high-precision printed and demonstrated successfully, presenting this technique with huge potential for fabricating flexible/conformal electronics on arbitrary 3D structures.
Collapse
Affiliation(s)
- Hongyang Wang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Dong Ye
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Aokang Li
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Bo Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Wang Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Baoli Wang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Ziru Wang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Qingshuang Wu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Chenyang Zhao
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Guan-Jun Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - YongAn Huang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|
6
|
Cho MO, Kim S, Back S, Jang W, Choi JH, Kang B, Lim SH. Monolithic Integration of Ultraslim Flow Sensor and Medical Guidewire by Laser Filament Scanning Sintering for In Vivo Diagnostics of Cardiovascular Diseases. ACS Sens 2024; 9:602-614. [PMID: 38060197 DOI: 10.1021/acssensors.3c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
In this study, an ultraslim thermal flow sensor system integrated onto a 340 μm diameter medical guidewire was developed using a laser filament scanning sintering method for the early diagnosis of cardiovascular diseases. The proposed system is a calorimetric-based micro thermal flow sensor comprising a microheater and two thermistors. Prior to fabrication, the sensor design was optimized through flow simulation, and the patterned sensor was successfully implemented on a thin and curved surface of the medical guidewire using a laser patterning method with Ag nanoparticles. The performance of the ultraslim thermal flow sensor-on-guidewire system (SoW) was evaluated under pulsatile flow by using an artificial heartbeat simulator with differentially induced fluid flow velocities of up to 60 cm/s. The resulting electrical signals generated by the temperature difference between the two thermistors caused by the fluid flow were measured across different velocity ranges. Based on the obtained data, a calibration curve was derived to establish the relationship between the fluid velocity and the sensor output voltage. Furthermore, the SoW was tested on living animals, whereby the measured blood flow velocities were 60-90 cm/s in the left coronary artery of pigs. This research demonstrates the potential of ultraslim microsensors, such as the developed thermal flow sensor system, for various industries, particularly in the medical field.
Collapse
Affiliation(s)
- Myoung-Ock Cho
- Department of Mechanical Systems Engineering, Graduate School, Kookmin University, Seoul 02707, Korea
| | - Sunyoung Kim
- Department of Mechanical Systems Engineering, Graduate School, Kookmin University, Seoul 02707, Korea
| | - Seunghyun Back
- Department of Mechanical Systems Engineering, Graduate School, Kookmin University, Seoul 02707, Korea
| | - Woojin Jang
- Department of Mechanical Systems Engineering, Graduate School, Kookmin University, Seoul 02707, Korea
| | - Jin-Ho Choi
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwonro, Gangnamgu, Seoul 06351, Republic of Korea
| | - Bongchul Kang
- Kookmin University, School of Mechanical Engineering, Kookmin University, Seoul 02707, Korea
| | - Si-Hyung Lim
- Kookmin University, School of Mechanical Engineering, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
7
|
Sun R, Ma M, Ma X, Kang H, Wang S, Sun J. Direct-Writing Flexible Metal Circuit with Polymer/Metal Precursor Ink and Interfacial Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7426-7433. [PMID: 37192423 DOI: 10.1021/acs.langmuir.3c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this study, flexible metal circuits are fabricated with polymer/metal precursor ink and an interfacial reaction by direct-writing technology. Poly(vinyl alcohol) (PVA) is selected as one component of ink, which could be a flexible composite in a metal circuit and an adhesive layer to connect the flexible metal circuit with the flexible substrate. Silver nitrate (AgNO3) is added to the ink as a source of metal. After the direct-writing structure was placed in contact with an ascorbic acid (VC) aqueous solution with an adjustable process, silver nanoparticles (AgNPs) with 100-400 nm uniform size could be generated on the direct-writing PVA skeleton. The resistivity of the composite silver layer could reach 10-6 Ω·m without any postprocessing. Meanwhile, the resistance change could keep within 20% with 180° bending after 10 000 repeat times. Patterned flexible metal circuits could be facilely fabricated by direct-writing technology, which presented excellent electrical conductivity and flexibility.
Collapse
Affiliation(s)
- Rui Sun
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mengdi Ma
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiangcai Ma
- Department of Printing and Packaging Engineering, Shanghai Publishing and Printing College, Shanghai 200093, China
| | - Haiting Kang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shuo Wang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jiazhen Sun
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Department of Printing and Packaging Engineering, Shanghai Publishing and Printing College, Shanghai 200093, China
| |
Collapse
|
8
|
Liu Y, Zhu H, Xing L, Bu Q, Ren D, Sun B. Recent advances in inkjet-printing technologies for flexible/wearable electronics. NANOSCALE 2023; 15:6025-6051. [PMID: 36892458 DOI: 10.1039/d2nr05649f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rapid development of flexible/wearable electronics requires novel fabricating strategies. Among the state-of-the-art techniques, inkjet printing has aroused considerable interest due to the possibility of large-scale fabricating flexible electronic devices with good reliability, high time efficiency, a low manufacturing cost, and so on. In this review, based on the working principle, recent advances in the inkjet printing technology in the field of flexible/wearable electronics are summarized, including flexible supercapacitors, transistors, sensors, thermoelectric generators, wearable fabric, and for radio frequency identification. In addition, some current challenges and future opportunities in this area are also addressed. We hope this review article can give positive suggestions to the researchers in the area of flexible electronics.
Collapse
Affiliation(s)
- Yu Liu
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
| | - Hongze Zhu
- College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Lei Xing
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
| | - Qingkai Bu
- College of Computer Science and Technology, Qingdao University, Qingdao 266071, PR. China
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, PR. China
| | - Dayong Ren
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR. China.
| | - Bin Sun
- College of Electronics and Information, Qingdao University, Qingdao 266071, PR. China.
- Weihai Innovation Research Institute of Qingdao University, Weihai 264200, PR. China
| |
Collapse
|
9
|
Xu J, Li Y, Wang J, Liu H, Hou Q, Wang R, Lang T, Cui B, Pan H, Chen Y, Quan J, Yang H, Li L, Liu Y. Screen-printed highly stretchable and stable flexible electrodes with a negative Poisson's ratio structure for supercapacitors. NANOSCALE 2023; 15:1260-1272. [PMID: 36541665 DOI: 10.1039/d2nr06669f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Flexible power sources are crucial to developing flexible electronic systems; nonetheless, the current poor stretchability and stability of flexible power sources hinder their application in such devices. Accordingly, the stretchability and fatigue stability of flexible power sources are crucial for the practical application of flexible electronic systems. In this work, a flexible electrode with an arc-shaped star concave negative Poisson's ratio (NPR) structure is fabricated through the screen printing process. Using the combination of finite element analysis (FEA) and tensile tests, it is proven that the arc-shaped star concave NPR electrode can effectively reduce the maximum tensile stress and increase the maximum elongation (maximum elongation 140%). Furthermore, the flexible electrodes prepared in this study are assembled into all-solid-state symmetric supercapacitors (SSCs), and their electrochemical properties are tested. The SSC prepared in this study has a high areal capacitance of 243.1 mF cm-2. It retains 89.25% of its initial capacity after 5000 times of folding and can maintain a stable output even in extreme deformation, which indicates that the SSC prepared in this study has excellent stability. The SSC with the advantages mentioned above obtained in this study is expected to provide new opportunities to develop flexible electronic systems.
Collapse
Affiliation(s)
- Jianxin Xu
- College of Mechanical Engineering, Northeast Electric Power University, Jilin, China.
| | - Yang Li
- College of Mechanical Engineering, Northeast Electric Power University, Jilin, China.
| | - Junyao Wang
- College of Mechanical Engineering, Northeast Electric Power University, Jilin, China.
| | - Huan Liu
- College of Mechanical Engineering, Northeast Electric Power University, Jilin, China.
| | - Qi Hou
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| | - Rui Wang
- College of Mechanical Engineering, Northeast Electric Power University, Jilin, China.
| | - Tianhong Lang
- College of Mechanical Engineering, Northeast Electric Power University, Jilin, China.
| | - Bowen Cui
- College of Mechanical Engineering, Northeast Electric Power University, Jilin, China.
| | - Hongxu Pan
- College of Mechanical Engineering, Northeast Electric Power University, Jilin, China.
| | - Yansong Chen
- College of Mechanical Engineering, Northeast Electric Power University, Jilin, China.
| | - Jingran Quan
- College of Mechanical Engineering, Northeast Electric Power University, Jilin, China.
| | - Hanbo Yang
- College of Mechanical Engineering, Northeast Electric Power University, Jilin, China.
| | - Lixiang Li
- College of Mechanical Engineering, Northeast Electric Power University, Jilin, China.
| | - Yahao Liu
- College of Mechanical Engineering, Northeast Electric Power University, Jilin, China.
| |
Collapse
|
10
|
Yu X, Li H, Song Y. Ink-Drop Dynamics on Chemically Modified Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15453-15462. [PMID: 36502385 DOI: 10.1021/acs.langmuir.2c03108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inkjet printing provides an efficient routine for distributing functional materials into locations with well-designed arrangements. As one of the most critical factors in determining the printing quality, the impacting and depositing behaviors of ink drops largely depend on the wettability of the target surface. In addition to printing on solids with intrinsic wettability, various ink-drop impact dynamics and deposition morphologies have been reported through modifying the surface wettability including both homogeneous and heterogeneous, which opens up possibilities for applications such as advanced optic/electric device fabrication and highly sensitive detection. In this Perspective, we summarize recent progress in the modification methods of solid surface wettability and their capability in modulating the ink-drop impacting and depositing dynamics. The challenges facing ink-drop regulation by chemical modification methodologies are also envisaged at the end of the Perspective.
Collapse
Affiliation(s)
- Xinye Yu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huizeng Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Controllable depositing behaviors and deposited morphologies of inkjet droplets on high energy surface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Guo M, Brewster Ii JT, Zhang H, Zhao Y, Zhao Y. Challenges and Opportunities of Chemiresistors Based on Microelectromechanical Systems for Chemical Olfaction. ACS NANO 2022; 16:17778-17801. [PMID: 36355033 DOI: 10.1021/acsnano.2c08650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microelectromechanical-system (MEMS)-based semiconductor gas sensors are considered one of the fastest-growing, interdisciplinary high technologies during the post-Moore era. Modern advancements within this arena include wearable electronics, Internet of Things, and artificial brain-inspired intelligence, among other modalities, thus bringing opportunities to drive MEMS-based gas sensors with higher performance, lower costs, and wider applicability. However, the high demand for miniature and micropower sensors with unified processes on a single chip imposes great challenges. This review focuses on recent developments and pitfalls in MEMS-based micro- and nanoscale gas sensors and details future trends. We also cover the background of the topic, seminal efforts, current applications and challenges, and opportunities for next-generation systems.
Collapse
Affiliation(s)
- Mengya Guo
- School of Chemical Engineering & Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - James T Brewster Ii
- Division of Medicinal Chemistry, Pfizer Boulder Research & Development, Boulder, Colorado80301, United States
| | - Huacheng Zhang
- School of Chemical Engineering & Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| | - Yuxin Zhao
- School of Chemical Engineering & Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| |
Collapse
|
13
|
Aziz S, Ali J, Bhandari KS, Chen W, Li S, Jung DW. Reverse Offset Printed, Biocompatible Temperature Sensor Based on Dark Muscovado. SENSORS (BASEL, SWITZERLAND) 2022; 22:8726. [PMID: 36433321 PMCID: PMC9695939 DOI: 10.3390/s22228726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
A reverse-offset printed temperature sensor based on interdigitated electrodes (IDTs) has been investigated in this study. Silver nanoparticles (AgNPs) were printed on a glass slide in an IDT pattern by reverse-offset printer. The sensing layer consisted of a sucrose film obtained by spin coating the sucrose solution on the IDTs. The temperature sensor demonstrated a negative temperature coefficient (NTC) with an exponential decrease in resistance as the temperature increased. This trend is the characteristic of a NTC thermistor. There is an overall change of ~2800 kΩ for the temperature change of 0 °C to 100 °C. The thermistor is based on a unique temperature sensor using a naturally occurring biocompatible material, i.e., sucrose. The active sensing material of the thermistor, i.e., sucrose used in the experiments was obtained from extract of Muscovado. Our temperature sensor has potential in the biomedical and food industries where environmentally friendly and biocompatible materials are more suitable for sensing accurately and reliably.
Collapse
Affiliation(s)
- Shahid Aziz
- Department of Mechanical Engineering, Jeju National University, 102 Jejudaehakro, Jeju-si 63294, Korea
| | - Junaid Ali
- Optoelectronics Research Laboratory (OERL), Department of Physics, COMSATS University Islamabad, Islamabad 45500, Pakistan
| | - Krishna Singh Bhandari
- Department of Mechanical Engineering, Jeju National University, 102 Jejudaehakro, Jeju-si 63294, Korea
| | - Wenning Chen
- Department of Mechanical Engineering, Jeju National University, 102 Jejudaehakro, Jeju-si 63294, Korea
| | - Sijia Li
- Department of Mechanical Engineering, Jeju National University, 102 Jejudaehakro, Jeju-si 63294, Korea
| | - Dong Won Jung
- Department of Mechanical Engineering, Jeju National University, 102 Jejudaehakro, Jeju-si 63294, Korea
| |
Collapse
|
14
|
Ogumi K, Nagata K, Takimoto Y, Mishiba K, Matsuo Y. Inkjet printing of mechanochromic fluorenylidene-acridane. Sci Rep 2022; 12:16997. [PMID: 36217025 PMCID: PMC9550800 DOI: 10.1038/s41598-022-21600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
In mechanochromic material research, a serious problem is that mechanical treatment cannot be applied to the materials because of their responsiveness to stimuli. Inkjet printing is a useful solution deposition method for electronics, but materials must be processed to be suitable for an inkjet printer. Fluorenylidene-acridane (FA) exhibits ground-state mechanochromism with visual color changes and responds not only to mechanical pressure but also to alcohol. Alcohol inhibits the color change induced by mechanical stimulation because the mechanochromism of FA is based on a conformational change in its molecular structure. This phenomenon suggests that the mechanochromism of FA can be controlled using alcohol. For use in inkjet printing, minute particles of FA obtained by bead milling in ethanol were investigated for uniformity and size by scanning electron microscopy and gas adsorption measurement. Also, ink containing FA particles was prepared and examined for physical properties such as viscosity and surface tension. It was confirmed that the inkjet-printed pattern demonstrated visual color changes between yellow and green in response to mechanical pressure and alcohol. This report describing the control of mechanochromism and its specific application is expected to contribute to broadening the mechanochromic materials research field.
Collapse
Affiliation(s)
- Keisuke Ogumi
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Kohki Nagata
- Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Yuki Takimoto
- Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Kentaro Mishiba
- Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Yutaka Matsuo
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
15
|
Frequency independent, remotely reconfigurable passive coherent perfect absorber using conventional inkjet-printing technology. Sci Rep 2022; 12:5265. [PMID: 35347159 PMCID: PMC8960909 DOI: 10.1038/s41598-022-08665-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/09/2022] [Indexed: 11/26/2022] Open
Abstract
This work presents a systematic theoretical analysis and experimental validation of a novel coherent absorber which is printed through conventional inkjet-printing technology. The new absorber consists of a single resistively loaded sheet printed on a conventional plastic sheet, resulting a low complexity and passive design. The low-cost and easily fabricated absorber is frequency independent, polarization insensitive, wide-angle and we demonstrate its absorbance reconfigurability using a remote illumination as a control signal. Theoretical, numerical and experimental results are in good agreement. Specifically, experimental results shown that near perfect absorption (i.e., \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$100\%$$\end{document}100%) can be achieved using a printed sheet of thickness \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda /215$$\end{document}λ/215.
Collapse
|
16
|
Ren B, Song K, Sanikommu AR, Chai Y, Longmire MA, Chai W, Murfee WL, Huang Y. Study of sacrificial ink-assisted embedded printing for 3D perfusable channel creation for biomedical applications. APPLIED PHYSICS REVIEWS 2022; 9:011408. [PMID: 35242266 PMCID: PMC8785228 DOI: 10.1063/5.0068329] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/30/2021] [Indexed: 05/16/2023]
Abstract
For an engineered thick tissue construct to be alive and sustainable, it should be perfusable with respect to nutrients and oxygen. Embedded printing and then removing sacrificial inks in a cross-linkable yield-stress hydrogel matrix bath can serve as a valuable tool for fabricating perfusable tissue constructs. The objective of this study is to investigate the printability of sacrificial inks and the creation of perfusable channels in a cross-linkable yield-stress hydrogel matrix during embedded printing. Pluronic F-127, methylcellulose, and polyvinyl alcohol are selected as three representative sacrificial inks for their different physical and rheological properties. Their printability and removability performances have been evaluated during embedded printing in a gelatin microgel-based gelatin composite matrix bath, which is a cross-linkable yield-stress bath. The ink printability during embedded printing is different from that during printing in air due to the constraining effect of the matrix bath. Sacrificial inks with a shear-thinning property are capable of printing channels with a broad range of filaments by simply tuning the extrusion pressure. Bi-directional diffusion may happen between the sacrificial ink and matrix bath, which affects the sacrificial ink removal process and final channel diameter. As such, sacrificial inks with a low diffusion coefficient for gelatin precursor are desirable to minimize the diffusion from the gelatin precursor solution to minimize the post-printing channel diameter variation. For feasibility demonstration, a multi-channel perfusable alveolar mimic has been successfully designed, printed, and evaluated. The study results in the knowledge of the channel diameter controllability and sacrificial ink removability during embedded printing.
Collapse
Affiliation(s)
- Bing Ren
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Kaidong Song
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Anil Reddy Sanikommu
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Yejun Chai
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Matthew A. Longmire
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Wenxuan Chai
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Walter Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
- Author to whom correspondence should be addressed:. Telephone: 001-352-392-5520. Fax: 001-352-392-7303
| |
Collapse
|
17
|
Bertolucci F, Berdozzi N, Rebaioli L, Patil T, Vertechy R, Fassi I. Assessing the Relationships between Interdigital Geometry Quality and Inkjet Printing Parameters. MICROMACHINES 2021; 13:mi13010057. [PMID: 35056222 PMCID: PMC8780558 DOI: 10.3390/mi13010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
Abstract
Drop on demand (DoD) inkjet printing is a high precision, non-contact, and maskless additive manufacturing technique employed in producing high-precision micrometer-scaled geometries allowing free design manufacturing for flexible devices and printed electronics. A lot of studies exist regarding the ink droplet delivery from the nozzle to the substrate and the jet fluid dynamics, but the literature lacks systematic approaches dealing with the relationship between process parameters and geometrical outcome. This study investigates the influence of the main printing parameters (namely, the spacing between subsequent drops deposited on the substrate, the printing speed, and the nozzle temperature) on the accuracy of a representative geometry consisting of two interdigitated comb-shape electrodes. The study objective was achieved thanks to a proper experimental campaign developed according to Design of Experiments (DoE) methodology. The printing process performance was evaluated by suitable geometrical quantities extracted from the acquired images of the printed samples using a MATLAB algorithm. A drop spacing of 140 µm and 170 µm on the two main directions of the printing plane, with a nozzle temperature of 35 °C, resulted as the most appropriate parameter combination for printing the target geometry. No significant influence of the printing speed on the process outcomes was found, thus choosing the highest speed value within the investigated range can increase productivity.
Collapse
Affiliation(s)
- Federico Bertolucci
- Industrial Engineering Department, University of Bologna, 40136 Bologna, Italy; (F.B.); (N.B.); (R.V.)
| | - Nicolò Berdozzi
- Industrial Engineering Department, University of Bologna, 40136 Bologna, Italy; (F.B.); (N.B.); (R.V.)
| | - Lara Rebaioli
- Consiglio Nazionale delle Ricerche, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, 20133 Milan, Italy; (T.P.); (I.F.)
- Correspondence:
| | - Trunal Patil
- Consiglio Nazionale delle Ricerche, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, 20133 Milan, Italy; (T.P.); (I.F.)
| | - Rocco Vertechy
- Industrial Engineering Department, University of Bologna, 40136 Bologna, Italy; (F.B.); (N.B.); (R.V.)
| | - Irene Fassi
- Consiglio Nazionale delle Ricerche, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, 20133 Milan, Italy; (T.P.); (I.F.)
| |
Collapse
|
18
|
Zhang H, Moon SK. Reviews on Machine Learning Approaches for Process Optimization in Noncontact Direct Ink Writing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53323-53345. [PMID: 34042439 DOI: 10.1021/acsami.1c04544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, machine learning has gained considerable attention in noncontact direct ink writing because of its novel process modeling and optimization techniques. Unlike conventional fabrication approaches, noncontact direct ink writing is an emerging 3D printing technology for directly fabricating low-cost and customized device applications. Despite possessing many advantages, the achieved electrical performance of produced microelectronics is still limited by the printing quality of the noncontact ink writing process. Therefore, there has been increasing interest in the machine learning for process optimization in the noncontact direct ink writing. Compared with traditional approaches, despite machine learning-based strategies having great potential for efficient process optimization, they are still limited to optimize a specific aspect of the printing process in the noncontact direct ink writing. Therefore, a systematic process optimization approach that integrates the advantages of state-of-the-art machine learning techniques is in demand to fully optimize the overall printing quality. In this paper, we systematically discuss the printing principles, key influencing factors, and main limitations of the noncontact direct ink writing technologies based on inkjet printing (IJP) and aerosol jet printing (AJP). The requirements for process optimization of the noncontact direct ink writing are classified into four main aspects. Then, traditional methods and the state-of-the-art machine learning-based strategies adopted in IJP and AJP for process optimization are reviewed and compared with pros and cons. Finally, to further develop a systematic machine learning approach for the process optimization, we highlight the major limitations, challenges, and future directions of the current machine learning applications.
Collapse
Affiliation(s)
- Haining Zhang
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Seung Ki Moon
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
19
|
Abstract
Smart materials are a kind of functional materials which can sense and response to environmental conditions or stimuli from optical, electrical, magnetic mechanical, thermal, and chemical signals, etc. Patterning of smart materials is the key to achieving large-scale arrays of functional devices. Over the last decades, printing methods including inkjet printing, template-assisted printing, and 3D printing are extensively investigated and utilized in fabricating intelligent micro/nano devices, as printing strategies allow for constructing multidimensional and multimaterial architectures. Great strides in printable smart materials are opening new possibilities for functional devices to better serve human beings, such as wearable sensors, integrated optoelectronics, artificial neurons, and so on. However, there are still many challenges and drawbacks that need to be overcome in order to achieve the controllable modulation between smart materials and device performance. In this review, we give an overview on printable smart materials, printing strategies, and applications of printed functional devices. In addition, the advantages in actual practices of printing smart materials-based devices are discussed, and the current limitations and future opportunities are proposed. This review aims to summarize the recent progress and provide reference for novel smart materials and printing strategies as well as applications of intelligent devices.
Collapse
Affiliation(s)
- Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street 2, 100190 Beijing, P. R. China.,University of Chinese Academy of Sciences, Yuquan Road no.19A, 100049 Beijing, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street 2, 100190 Beijing, P. R. China.,University of Chinese Academy of Sciences, Yuquan Road no.19A, 100049 Beijing, P. R. China
| |
Collapse
|
20
|
Introduction of Chalcogenide Glasses to Additive Manufacturing: Nanoparticle Ink Formulation, Inkjet Printing, and Phase Change Devices Fabrication. Sci Rep 2021; 11:14311. [PMID: 34253761 PMCID: PMC8275797 DOI: 10.1038/s41598-021-93515-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Chalcogenide glasses are one of the most versatile materials that have been widely researched because of their flexible optical, chemical, electronic, and phase change properties. Their application is usually in the form of thin films, which work as active layers in sensors and memory devices. In this work, we investigate the formulation of nanoparticle ink of Ge-Se chalcogenide glasses and its potential applications. The process steps reported in this work describe nanoparticle ink formulation from chalcogenide glasses, its application via inkjet printing and dip-coating methods and sintering to manufacture phase change devices. We report data regarding nanoparticle production by ball milling and ultrasonication along with the essential characteristics of the formed inks, like contact angle and viscosity. The printed chalcogenide glass films were characterized by Raman spectroscopy, X-ray diffraction, energy dispersive spectroscopy and atomic force microscopy. The printed films exhibited similar compositional, structural, electronic and optical properties as the thermally evaporated thin films. The crystallization processes of the printed films are discussed compared to those obtained by vacuum thermal deposition. We demonstrate the formation of printed thin films using nanoparticle inks, low-temperature sintering and proof for the first time, their application in electronic and photonic temperature sensors utilizing their phase change property. This work adds chalcogenide glasses to the list of inkjet printable materials, thus offering an easy way to form arbitrary device structures for optical and electronic applications.
Collapse
|
21
|
Li L, Li W, Sun Q, Liu X, Jiu J, Tenjimbayashi M, Kanehara M, Nakayama T, Minari T. Dual Surface Architectonics for Directed Self-Assembly of Ultrahigh-Resolution Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101754. [PMID: 33988898 DOI: 10.1002/smll.202101754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The directed self-assembly of electronic circuits using functional metallic inks has attracted intensive attention because of its high compatibility with extensive applications ranging from soft printed circuits to wearable devices. However, the typical resolution of conventional self-assembly technologies is not sufficient for practical applications in the rapidly evolving additively manufactured electronics (AMEs) market. Herein, an ultrahigh-resolution self-assembly strategy is reported based on a dual-surface-architectonics (DSA) process. Inspired by the Tokay gecko, the approach is to endow submicrometer-scale surface regions with strong adhesion force toward metallic inks via a series of photoirradiation and chemical polarization treatments. The prepared DSA surface enables the directed self-assembly of electronic circuits with unprecedented 600 nm resolution, suppresses the coffee-ring effect, and results in a reliable conductivity of 14.1 ± 0.6 µΩ cm. Furthermore, the DSA process enables the layer-by-layer fabrication of fully printed organic thin-film transistors with a short channel length of 1 µm, which results in a large on-off ratio of 106 and a high field-effect mobility of 0.5 cm2 V-1 s-1 .
Collapse
Affiliation(s)
- Lingying Li
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Wanli Li
- School of Mechanical Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi City, Jiangsu, 214122, P. R. China
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi City, Jiangsu, 214122, P. R. China
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhongyuan, Zhengzhou, Henan, 450001, P. R. China
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhongyuan, Zhengzhou, Henan, 450001, P. R. China
| | - Jinting Jiu
- Solder Technical Center, Senju Metal Industry Co., Ltd., Senju Hashido-cho 23, Adachi-ku, Tokyo, 120-8555, Japan
| | - Mizuki Tenjimbayashi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | | | - Tomonobu Nakayama
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takeo Minari
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
22
|
Mohd Basri MS, Liew Min Ren B, A. Talib R, Zakaria R, Kamarudin SH. Novel Mangosteen-Leaves-Based Marker Ink: Color Lightness, Viscosity, Optimized Composition, and Microstructural Analysis. Polymers (Basel) 2021; 13:polym13101581. [PMID: 34069259 PMCID: PMC8156445 DOI: 10.3390/polym13101581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/25/2022] Open
Abstract
Dry mangosteen leaves are one of the raw materials used to produce marker ink. However, research using this free and abundant resource is rather limited. The less efficient one-factor-at-a-time (OFAT) approach was mostly used in past studies on plant-based marker ink. The use of statistical analysis and the regression coefficient model (mathematical model) was considered essential in predicting the best combination of factors in formulating mangosteen leaf-based marker ink. Ideally, ink should have maximum color lightness, minimum viscosity, and fast-drying speed. The objective of this study to study the effect of glycerol and carboxymethyl cellulose (CMC) on the color lightness and viscosity of mangosteen-leaves-based marker ink. The viscosity, color lightness, and drying properties of the ink were tested, the significant effect of glycerol and CMC (responses) on ink properties was identified and the prediction model on the optimum value of the responses was developed by using response surface methodology (RSM). The microstructure of mangosteen leaves was analyzed to study the surface morphology and cell structure during dye extraction. A low amount of glycerol used was found to increase the value of color lightness. A decrease in CMC amounts resulted in low viscosity of marker ink. The optimum formulation for the ink can be achieved when the weight percents of glycerol, benzalkonium chloride, ferrous sulphate, and CMC are set at 5, 5, 1, and 3, respectively. SEM micrographs showed the greatest amount of cell wall structure collapse on samples boiled with the lowest amount of glycerol.
Collapse
Affiliation(s)
- Mohd Salahuddin Mohd Basri
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (B.L.M.R.); (R.A.T.); (R.Z.)
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Brenda Liew Min Ren
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (B.L.M.R.); (R.A.T.); (R.Z.)
| | - Rosnita A. Talib
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (B.L.M.R.); (R.A.T.); (R.Z.)
| | - Rabitah Zakaria
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (B.L.M.R.); (R.A.T.); (R.Z.)
| | - Siti Hasnah Kamarudin
- School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia;
| |
Collapse
|
23
|
A Review of Inkjet Printed Graphene and Carbon Nanotubes Based Gas Sensors. SENSORS 2020; 20:s20195642. [PMID: 33023160 PMCID: PMC7583986 DOI: 10.3390/s20195642] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
Graphene and carbon nanotube (CNT)-based gas/vapor sensors have gained much traction for numerous applications over the last decade due to their excellent sensing performance at ambient conditions. Inkjet printing various forms of graphene (reduced graphene oxide or modified graphene) and CNT (single-wall nanotubes (SWNTs) or multiwall nanotubes (MWNTs)) nanomaterials allows fabrication onto flexible substrates which enable gas sensing applications in flexible electronics. This review focuses on their recent developments and provides an overview of the state-of-the-art in inkjet printing of graphene and CNT based sensors targeting gases, such as NO2, Cl2, CO2, NH3, and organic vapors. Moreover, this review presents the current enhancements and challenges of printing CNT and graphene-based gas/vapor sensors, the role of defects, and advanced printing techniques using these nanomaterials, while highlighting challenges in reliability and reproducibility. The future potential and outlook of this rapidly growing research are analyzed as well.
Collapse
|
24
|
Sun J, Li Y, Liu G, Chu F, Chen C, Zhang Y, Tian H, Song Y. Patterning a Superhydrophobic Area on a Facile Fabricated Superhydrophilic Layer Based on an Inkjet-Printed Water-Soluble Polymer Template. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9952-9959. [PMID: 32787129 DOI: 10.1021/acs.langmuir.0c01769] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An elaborated surface with a superhydrophilic area and a superhydrophobic area was fabricated by inkjet printing a water-soluble polymer template on a superhydrophilic layer. Titanate was used to generate the superhydrophilic layer with an in situ reaction. A water-soluble polymer template was inkjet printed on the facile fabricated superhydrophilic layer. Superhydrophobic treatment was carried out on the inkjet-printed surface with perfluorinated molecules. A superhydrophilic-superhydrophobic patterned surface (SSPS) was obtained by washing out the water-soluble polymer template. Various patterns of SSPS were fabricated with the different water-soluble polymer templates. Then, adhesion and deposition of water droplets were studied on the SSPS with the different wetting abilities on the surface. Meanwhile, a microreaction with a microfluidic chip was realized on the SSPS. In this work, systematic research on fabricating an SSPS based on a facile fabricated superhydrophilic layer with an inkjet-printed water-soluble polymer template is presented. It will have great potential for patterning materials, fabricating devices, and researching interfaces, such as microdroplet self-removal, analyte enrichment, and liquid-liquid interface reaction.
Collapse
Affiliation(s)
- Jiazhen Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yang Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Guangping Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fuqiang Chu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chen Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongshan Tian
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
25
|
Sajedi-Moghaddam A, Rahmanian E, Naseri N. Inkjet-Printing Technology for Supercapacitor Application: Current State and Perspectives. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34487-34504. [PMID: 32628006 DOI: 10.1021/acsami.0c07689] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Inkjet-printing (IJP) technology is recognized as a significant breakthrough in manufacturing high-performance electrochemical energy storage systems. In comparison to conventional fabrication protocols, this printing technique offers various advantages, such as contact-less high-resolution patterning capability; low-cost, controlled material deposition; process simplicity; and compatibility with a variety of substrates. Due to these outstanding merits, significant research efforts have been devoted to utilizing IJP technology in developing electrochemical energy storage devices, particularly in supercapacitors (SCs). These attempts have focused on fabricating the key components of SCs, including electrode, electrolyte, and current collector, through rational formulation and patterning of functional inks. In an attempt to further expand the material design strategy and accelerate technology development, it is urgent and essential to obtain an in-depth insight into the recent developments of inkjet-printed SCs. Toward this aim, first, a general introduction to the fundamental principles of IJP technology is provided. After that, the latest achievements in IJP of capacitive energy storage devices are systematically summarized and discussed with a particular emphasis on the design of printable functional materials, the printing process, and capacitive performance of inkjet-printed SCs. To close, existing challenges and future research trends for developing state-of-the-art inkjet-printed SCs are proposed.
Collapse
Affiliation(s)
- Ali Sajedi-Moghaddam
- Department of Physics, Sharif University of Technology, P. O. Box 11155-9161, Tehran, Islamic Republic of Iran
| | - Elham Rahmanian
- Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Islamic Republic of Iran
| | - Naimeh Naseri
- Department of Physics, Sharif University of Technology, P. O. Box 11155-9161, Tehran, Islamic Republic of Iran
| |
Collapse
|