1
|
Chen X, Michinobu T. Synthesis of Nonplanar Push-Pull Chromophores with Various Heterocyclic Moieties via [2 + 2] Cycloaddition-Retroelectrocyclization Reaction. J Org Chem 2025; 90:1561-1570. [PMID: 39817696 DOI: 10.1021/acs.joc.4c02595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
A series of 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) derivatives with various heterocyclic moieties, including pyridine, carbazole, indole, and benzothiadiazole, was newly synthesized through a [2 + 2] cycloaddition-retroelectrocyclization reaction. Symmetric electron-rich 1,3-butadiynes with end-capped heterocyclic substituents were reacted with tetracyanoethylene (TCNE), yielding the target TCBD products in 60-80% yields under ambient or mild heating conditions. The thermal stability and optical and electrochemical properties of both 1,3-butadiyne precursors and the corresponding TCBD derivatives were investigated by using thermogravimetric analysis (TGA), UV-vis spectroscopy, and cyclic voltammetry (CV). The TCBD derivatives featured narrow bandgaps due to the intramolecular charge transfer interactions of push-pull chromophores. In addition, the optimized structures and frontier molecular orbitals with their energy levels were determined by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xu Chen
- Department of Materials Science and Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
2
|
Lin Z, Zhong YH, Zhong L, Ye X, Chung LH, Hu X, Xu Z, Yu L, He J. Minimalist Design for Solar Energy Conversion: Revamping the π-Grid of an Organic Framework into Open-Shell Superabsorbers. JACS AU 2023; 3:1711-1722. [PMID: 37388679 PMCID: PMC10302748 DOI: 10.1021/jacsau.3c00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023]
Abstract
We apply a versatile reaction to a versatile solid: the former involves the electron-deficient alkene tetracyanoethylene (TCNE) as the guest reactant; the latter consists of stacked 2D honeycomb covalent networks based on the electron-rich β-ketoenamine hinges that also activate the conjugated, connecting alkyne units. The TCNE/alkyne reaction is a [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) that forms strong push-pull units directly into the backbone of the framework-i.e., using only the minimalist "bare-bones" scaffold, without the need for additional side groups of alkynes or other functions. The ability of the stacked alkyne units (i.e., as part of the honeycomb mass) to undergo such extensive rearrangement highlights the structural flexibility of these covalent organic framework (COF) hosts. The COF solids remain porous, crystalline, and air-/water-stable after the CA-RE modification, while the resulting push-pull units feature distinct open-shell/free-radical character, are strongly light-absorbing, and shift the absorption ends from 590 nm to around 1900 nm (band gaps from 2.17-2.23 to 0.87-0.95 eV), so as to better capture sunlight (especially the infrared region which takes up 52% of the solar energy). As a result, the modified COF materials achieve the highest photothermal conversion performances, holding promise in thermoelectric power generation and solar steam generation (e.g., with solar-vapor conversion efficiencies >96%).
Collapse
Affiliation(s)
- Zhiqing Lin
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan-Hui Zhong
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Leheng Zhong
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinhe Ye
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lai-Hon Chung
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanhe Hu
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhengtao Xu
- Institute
of Materials Research and Engineering (IMRE), Agency for Science,
Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Lin Yu
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun He
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Ma T, Li K, Hu J, Xin Y, Cao J, He J, Xu Z. Carbazole-Equipped Metal-Organic Framework for Stability, Photocatalysis, and Fluorescence Detection. Inorg Chem 2022; 61:14352-14360. [PMID: 36026539 DOI: 10.1021/acs.inorgchem.2c02135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The useful yet underutilized backfolded design is invoked here for functionalizing porous solids with the versatile carbazole function. Specifically, we attach carbazole groups as backfolded side arms onto the backbone of a linear dicarboxyl linker molecule. The bulky carbazole side arms point away from the carboxyl links and do not disrupt the Zr-carboxyl framework formation; namely, the resultant MOF solid ZrL1 features the same net as that of the unfunctionalized dicarboxyl linker, also known as the PCN-111 net or UiO-66 net. The ZrL1 structure features only half linker occupancy (about 6 out of the 12 linkers around the Zr6O8 cluster being missing) and partially collapses upon activation (acetone exchange and evacuation). Notably, the stability improves after heating in diphenyl oxide at 260 °C (POP-260 treatment; to form ZrL1-260), as indicated by the higher crystallinity and surface area of the activated ZrL1-260 sample. The ZrL1-260 samples achieve 72% yield in photocatalyzing reductive dehalogenation of phenacyl bromide; ZrL1 can detect nitro-aromatic compounds via fluorescence quenching, with selectivity and sensitivity toward 4-nitroaniline, featuring a limit of detection of 96 ppb.
Collapse
Affiliation(s)
- Tengrui Ma
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Kedi Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Yinger Xin
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jialin Cao
- College of Engineering and Applied Sciences, Nanjing University, Science Park of Nanjing University, Qixia District, 210008 Nanjing, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Zhengtao Xu
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| |
Collapse
|
4
|
Zhu W, Miao Z, Chu Y, Li L, Wang L, Wang D. Photoacoustic Effect of Near-Infrared Absorbing Organic Molecules via Click Chemistry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072329. [PMID: 35408728 PMCID: PMC9000579 DOI: 10.3390/molecules27072329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
Near-infrared dyes were developed to be contrast agents due to their ability to improve the productivity of photoacoustic (PA) imaging and photothermal therapy (PTT) treatments. During the article, we described in detail the PA and PT effects of a category of organic molecules. F4-TCNQ could potentially cause a red-shift in the peak PA intensity. The results show that the PTT intensity of the near-infrared dyes with phenyl groups were higher than near-infrared dyes with thiophene groups. We also investigated the photodynamic treatment effect of C1b to demonstrate that these dyes are highly desirable in biochemistry. The high photoacoustic intensity of the organic molecules and the good yield of reactive oxygen species could indicate that these dyes have good potential for a wide range of imaging applications. Finally, we embedded the dye (C1b) in a liposomal hydrophobic phospholipid bilayer (C1b⊂L) to facilitate the application of hydrophobic dyes in biomedical applications, which can be absorbed by cells with good compatible and high stability for the imaging of cellular PA.
Collapse
Affiliation(s)
- Wenqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Y.C.)
| | - Zongcheng Miao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Y.C.)
- Correspondence: (Z.M.); (L.W.); (D.W.); Tel.: +86-189-9115-0632 (Z.M.)
| | - Yaqin Chu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Y.C.)
| | - Liaoliao Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Lei Wang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi’an 710021, China
- Correspondence: (Z.M.); (L.W.); (D.W.); Tel.: +86-189-9115-0632 (Z.M.)
| | - Dong Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
- Correspondence: (Z.M.); (L.W.); (D.W.); Tel.: +86-189-9115-0632 (Z.M.)
| |
Collapse
|
5
|
Zhang B, Qian BB, Li CT, Li XW, Nie HX, Yu MH, Chang Z. Donor–acceptor systems in metal–organic frameworks: design, construction, and properties. CrystEngComm 2022. [DOI: 10.1039/d2ce00588c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this highlight, the development of donor acceptor (D–A) MOF was briefly reviewed and summarized in the aspects of design, construction, and properties. Also, an outlook about the research and potential application of D–A MOF has been presented.
Collapse
Affiliation(s)
- Bo Zhang
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Bin-Bin Qian
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Chang-Tai Li
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Xing-Wang Li
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Hong-Xiang Nie
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Ze Chang
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
6
|
Xu Z. Uniting Form and Function, Stability and Reactivity in Open Framework Materials. CHEM LETT 2021. [DOI: 10.1246/cl.200712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhengtao Xu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
7
|
Zhou HQ, He Y, Hu JY, Chung LH, Gu Q, Liao WM, Zeller M, Xu Z, He J. Conjugated crosslinks boost the conductivity and stability of a single crystalline metal-organic framework. Chem Commun (Camb) 2021; 57:187-190. [PMID: 33313631 DOI: 10.1039/d0cc06765b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A linker molecule with four pendant thiophene functions was crystallized with Zr(iv) ions to form a semiconductive porous coordination solid (1.1 × 10-5 S cm-1). Oxidative treatment with FeCl3 guests then coupled the thiophene units to form conjugated bridges as covalent crosslinks. The resulting hybrid of a metal-organic framework and conjugated polymer featured robust crystalline order that withstood long-term air exposure and broad pH (from 0 to 12) conditions. Moreover, the homocoupled thiophene units, conjugated through sulfide links (-S-) with the linker backbone, afforded higher electronic conductivity (e.g., >2.2 × 10-3 S cm-1), which is characteristic of conductive polymer prototypes of polythiophene and polyphenylene sulfide. The crosslinked solid also exhibited proton conductivity that could be increased broadly upon H2SO4 treatment (e.g., from 5.0 × 10-7 to 1.6 × 10-3 S cm-1).
Collapse
Affiliation(s)
- Hua-Qun Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hu J, Deng X, Zhang H, Diao Y, Cheng S, Zheng SL, Liao WM, He J, Xu Z. Linker Deficiency, Aromatic Ring Fusion, and Electrocatalysis in a Porous Ni 8-Pyrazolate Network. Inorg Chem 2021; 60:161-166. [PMID: 33306390 DOI: 10.1021/acs.inorgchem.0c02662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cruciform linker molecule here features two designer functions: the pyrazole donors for framework construction, and the vicinal alkynyl units for benzannulation to form nanographene units into the Ni8-pyrazolate scaffold. Unlike the full 12 connections of the Ni8(OH)4(H2O)2 clusters in other Ni8-pyrazolate networks, significant linker deficiency was observed here, leaving about half of the Ni(II) sites capped by acetate ligands, which can be potentially removed to open the metal sites for reactivity. The crystalline Ni8-pyrazolate scaffold also retains the crystalline order even after thermal treatments (up to 300 °C) that served to partially graphitize the neighboring alkyne units. The resultant nanographene components enhance the electroactive properties of the porous hosts, achieving hydrogen evolution reaction (HER) activity that rivals that of topical nickel/palladium-enabled materials.
Collapse
Affiliation(s)
- Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xiangling Deng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Hu Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yingxue Diao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Shengxian Cheng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Sai-Li Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Wei-Ming Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Zhengtao Xu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| |
Collapse
|
9
|
Cheng S, Tieu P, Gao W, Hu J, Feng W, He J, Pan X, Xu Z. Crystallinity after decarboxylation of a metal-carboxylate framework: indestructible porosity for catalysis. Dalton Trans 2020; 49:11902-11910. [PMID: 32808638 DOI: 10.1039/d0dt02075c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report a curious case study of a Zr(iv)-carboxylate framework, which retains significant crystalline order after cascade thermocyclization of its linker components, and - more notably - after the crucial carboxylate links were severed by heat. Vigorous heat treatment (e.g., 450 °C and above) benzannulates the multiple alkyne groups on the linker to generate linked nanographene blocks and to afford real stability. The resultant Zr oxide/nanographene hybrid solid is stable in saturated NaOH and concentrated H3PO4, allowing a convenient anchoring of H3PO4 into its porous matrix to enable size-selective heterogeneous acid catalysis. The Zr oxide components can also be removed by strong hydrofluoric acid to further enhance the surface area (up to 650 m2 g-1), without collapsing the nanographene scaffold. The crystallinity order and the extensive thermal transformations were characterized by X-ray diffraction, scanning transmission electron microscopy (STEM), IR, solid state NMR and other instrumental methods.
Collapse
Affiliation(s)
- Shengxian Cheng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | | | | | | | | | | | | | | |
Collapse
|