1
|
Abstract
Efforts to design devices emulating complex cognitive abilities and response processes of biological systems have long been a coveted goal. Recent advancements in flexible electronics, mirroring human tissue's mechanical properties, hold significant promise. Artificial neuron devices, hinging on flexible artificial synapses, bioinspired sensors, and actuators, are meticulously engineered to mimic the biological systems. However, this field is in its infancy, requiring substantial groundwork to achieve autonomous systems with intelligent feedback, adaptability, and tangible problem-solving capabilities. This review provides a comprehensive overview of recent advancements in artificial neuron devices. It starts with fundamental principles of artificial synaptic devices and explores artificial sensory systems, integrating artificial synapses and bioinspired sensors to replicate all five human senses. A systematic presentation of artificial nervous systems follows, designed to emulate fundamental human nervous system functions. The review also discusses potential applications and outlines existing challenges, offering insights into future prospects. We aim for this review to illuminate the burgeoning field of artificial neuron devices, inspiring further innovation in this captivating area of research.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cong Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongli He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
2
|
Lanza M, Hui F, Wen C, Ferrari AC. Resistive Switching Crossbar Arrays Based on Layered Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205402. [PMID: 36094019 DOI: 10.1002/adma.202205402] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Resistive switching (RS) devices are metal/insulator/metal cells that can change their electrical resistance when electrical stimuli are applied between the electrodes, and they can be used to store and compute data. Planar crossbar arrays of RS devices can offer a high integration density (>108 devices mm- 2 ) and this can be further enhanced by stacking them three-dimensionally. The advantage of using layered materials (LMs) in RS devices compared to traditional phase-change materials and metal oxides is that their electrical properties can be adjusted with a higher precision. Here, the key figures-of-merit and procedures to implement LM-based RS devices are defined. LM-based RS devices fabricated using methods compatible with industry are identified and discussed. The focus is on small devices (size < 9 µm2 ) arranged in crossbar structures, since larger devices may be affected by artifacts, such as grain boundaries and flake junctions. How to enhance device performance, so to accelerate the development of this technology, is also discussed.
Collapse
Affiliation(s)
- Mario Lanza
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Fei Hui
- School of Materials Science and Engineering, The Key Laboratory of Material, Processing and Mold of the Ministry of Education, Henan Key Laboratory of Advanced, Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chao Wen
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| |
Collapse
|
3
|
Fu Y, Chan YT, Jiang YP, Chang KH, Wu HC, Lai CS, Wang JC. Polarity-Differentiated Dielectric Materials in Monolayer Graphene Charge-Regulated Field-Effect Transistors for an Artificial Reflex Arc and Pain-Modulation System of the Spinal Cord. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202059. [PMID: 35619163 DOI: 10.1002/adma.202202059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Indexed: 06/15/2023]
Abstract
The nervous system is a vital part of organisms to survive and it endows them with remarkable abilities, such as perception, recognition, regulation, learning, and decision-making, by intertwining myriad neurons. To realize such outstanding efficacies and functions, many artificial devices and systems have been investigated to emulate the operating principles of the nervous system. Here, an artificial reflex arc (ARA) and artificial pain modulation system (APMS) are proposed to imitate the unconscious behaviors of the spinal cord. Gdx Oy - and Alx Oy -based charge-regulated field-effect transistors (CRFETs) with a monolayer graphene channel are fabricated and adopted as inhibitory and excitatory synapses, respectively, under the same pulse signals to mimic the biological reflex arc through a connection with a poly(vinylidene fluoride-co-trifluoroethylene)-based actuator. Additionally, a memristor is integrated with a CRFET as the interneuron to regulate the Dirac point by controlling the voltage drop on the graphene channel, analogous to the descending pain-inhibition system in the spinal cord, to prevent excessive pain perception. The proposed ARA and APMS provide a significant step forward to realizing the functions of the nervous system, giving promising potential for developing future intelligent alarm systems, neuroprosthetics, and neurorobotics.
Collapse
Affiliation(s)
- Yi Fu
- Department of Electronic Engineering, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
| | - Ya-Ting Chan
- Department of Electronic Engineering, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
| | - Yi-Pei Jiang
- Department of Electronic Engineering, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Guishan Dist, Taoyuan, 33305, Taiwan
- College of Medicine, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
| | - Hsiu-Chuan Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Guishan Dist, Taoyuan, 33305, Taiwan
- College of Medicine, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
| | - Chao-Sung Lai
- Department of Electronic Engineering, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
- Green Technology Research Center, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Guishan Dist, Taoyuan, 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Taishan Dist, New Taipei City, 243303, Taiwan
| | - Jer-Chyi Wang
- Department of Electronic Engineering, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
- Green Technology Research Center, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Guishan Dist, Taoyuan, 33305, Taiwan
- Department of Electronic Engineering, Ming Chi University of Technology, Taishan Dist, New Taipei City, 243303, Taiwan
| |
Collapse
|
4
|
Ding G, Yang B, Chen RS, Mo WA, Zhou K, Liu Y, Shang G, Zhai Y, Han ST, Zhou Y. Reconfigurable 2D WSe 2 -Based Memtransistor for Mimicking Homosynaptic and Heterosynaptic Plasticity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103175. [PMID: 34528382 DOI: 10.1002/smll.202103175] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The mimicking of both homosynaptic and heterosynaptic plasticity using a high-performance synaptic device is important for developing human-brain-like neuromorphic computing systems to overcome the ever-increasing challenges caused by the conventional von Neumann architecture. However, the commonly used synaptic devices (e.g., memristors and transistors) require an extra modulate terminal to mimic heterosynaptic plasticity, and their capability of synaptic plasticity simulation is limited by the low weight adjustability. In this study, a WSe2 -based memtransistor for mimicking both homosynaptic and heterosynaptic plasticity is fabricated. By applying spikes on either the drain or gate terminal, the memtransistor can mimic common homosynaptic plasticity, including spiking rate dependent plasticity, paired pulse facilitation/depression, synaptic potentiation/depression, and filtering. Benefitting from the multi-terminal input and high adjustability, the resistance state number and linearity of the memtransistor can be improved by optimizing the conditions of the two inputs. Moreover, the device can successfully mimic heterosynaptic plasticity without introducing an extra terminal and can simultaneously offer versatile reconfigurability of excitatory and inhibitory plasticity. These highly adjustable and reconfigurable characteristics offer memtransistors more freedom of choice for tuning synaptic weight, optimizing circuit design, and building artificial neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Baidong Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ruo-Si Chen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wen-Ai Mo
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yang Liu
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gang Shang
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yongbiao Zhai
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
5
|
Wang Y, Huang W, Zhang Z, Fan L, Huang Q, Wang J, Zhang Y, Zhang M. Ultralow-power flexible transparent carbon nanotube synaptic transistors for emotional memory. NANOSCALE 2021; 13:11360-11369. [PMID: 34096562 DOI: 10.1039/d1nr02099d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Emulating the biological behavior of the human brain with artificial neuromorphic devices is essential for the future development of human-machine interactive systems, bionic sensing systems and intelligent robotic systems. In this paper, artificial flexible transparent carbon nanotube synaptic transistors (F-CNT-STs) with signal transmission and emotional learning functions are realized by adopting the poly(vinyl alcohol) (PVA)/SiO2 proton-conducting electrolyte. Synaptic functions of biological synapses including excitatory and inhibitory behaviors are successfully emulated in the F-CNT-STs. Besides, synaptic plasticity such as spike-duration-dependent plasticity, spike-number-dependent plasticity, spike-amplitude-dependent plasticity, paired-pulse facilitation, short-term plasticity, and long-term plasticity have all been systematically characterized. Moreover, the F-CNT-STs also closely imitate the behavior of human brain learning and emotional memory functions. After 1000 bending cycles at a radius of 3 mm, both the transistor characteristics and the synaptic functions can still be implemented correctly, showing outstanding mechanical capability. The realized F-CNT-STs possess low operating voltage, quick response, and ultra-low power consumption, indicating their high potential to work in low-power biological systems and artificial intelligence systems. The flexible artificial synaptic transistor enables its potential to be generally applicable to various flexible wearable biological and intelligent applications.
Collapse
Affiliation(s)
- Yarong Wang
- School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China.
| | - Weihong Huang
- School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China.
| | - Ziwei Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China.
| | - Lingchong Fan
- School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China.
| | - Qiuyue Huang
- School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China.
| | - Jiaxin Wang
- School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China.
| | - Yiming Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China.
| | - Min Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China.
| |
Collapse
|
6
|
Draude AP, Dierking I. Thermotropic liquid crystals with low-dimensional carbon allotropes. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abdf2d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
As display devices based on liquid crystals have matured over the last decades, liquid crystal research has shifted its priorities in slightly different directions, such as sensors, photonics, nanotechnology and even more biologically related fields like drug delivery. This implied a change of emphasis in the development of novel materials, of which a completely new class of liquid crystal based composites emerged, that of nanoparticle-dispersed liquid crystals. The underlying ideas were to add functionality, while maintaining switchability, and the exploitation of liquid crystal self-organisation to build hierarchical nanostructures. Of particular interest for applications are dispersions of carbon nanomaterials, such as fullerenes, nanotubes and the graphene variants, due to their interactions with conventional liquid crystals. While such systems have been investigated for the past two decades, we concentrate in this review on the effects of dimensionality of the dispersed carbon nanoparticles, which goes hand in hand with the more recent developments in this field. Examples are the doping of 0D fullerenes in liquid crystals and implications for Blue Phase stability, or 1D nanotubes in nematic and ferroelectric liquid crystals, questions of dispersibility and applications as alignment media in ITO-free devices. Graphene (2D) and especially graphene oxide are mainly investigated for their formation of lyotropic liquid crystals. We here discuss the more recent aspects of dispersion in thermotropics.
Collapse
|