1
|
Tu YC, Wang YM, Yao LJ. Macrophage-Targeting DNA Nanomaterials: A Future Direction of Biological Therapy. Int J Nanomedicine 2024; 19:3641-3655. [PMID: 38681094 PMCID: PMC11055528 DOI: 10.2147/ijn.s459288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
DNA can be used for precise construction of complex and flexible micro-nanostructures, including DNA origami, frame nucleic acids, and DNA hydrogels. DNA nanomaterials have good biocompatibility and can enter macrophages via scavenger receptor-mediated endocytosis. DNA nanomaterials can be uniquely and flexibly designed to ensure efficient uptake by macrophages, which represents a novel strategy to regulate macrophage function. With the development of nanotechnology, major advances have been made in the design and manufacturing of DNA nanomaterials for clinical therapy. In diseases accompanied by macrophage disturbances including tumor, infectious diseases, arthritis, fibrosis, acute lung injury, and atherosclerosis, DNA nanomaterials received considerable attention as potential treatments. However, we lack sufficient information to guarantee precise targeting of macrophages by DNA nanomaterials, which precludes their therapeutic applications. In this review, we summarize recent studies of macrophage-targeting DNA nanomaterials and discuss the limitations and challenges of this approach with regard to its potential use as a biological therapy.
Collapse
Affiliation(s)
- Yu-Chi Tu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yu-Mei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Li-Jun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
He S, Deng H, Li P, Tian Q, Yang Y, Hu J, Li H, Zhao T, Ling H, Liu Y, Liu S, Guo Q. Bimodal DNA self-origami material with nucleic acid function enhancement. J Nanobiotechnology 2024; 22:39. [PMID: 38279115 PMCID: PMC10821560 DOI: 10.1186/s12951-024-02296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND The design of DNA materials with specific nanostructures for biomedical tissue engineering applications remains a challenge. High-dimensional DNA nanomaterials are difficult to prepare and are unstable; moreover, their synthesis relies on heavy metal ions. Herein, we developed a bimodal DNA self-origami material with good biocompatibility and differing functions using a simple synthesis method. We simulated and characterized this material using a combination of oxDNA, freeze-fracture electron microscopy, and atomic force microscopy. Subsequently, we optimized the synthesis procedure to fix the morphology of this material. RESULTS Using molecular dynamics simulation, we found that the bimodal DNA self-origami material exhibited properties of spontaneous stretching and curling and could be fixed in a single morphology via synthesis control. The application of different functional nucleic acids enabled the achievement of various biological functions, and the performance of functional nucleic acids was significantly enhanced in the material. Consequently, leveraging the various functional nucleic acids enhanced by this material will facilitate the attainment of diverse biological functions. CONCLUSION The developed design can comprehensively reveal the morphology and dynamics of DNA materials. We thus report a novel strategy for the construction of high-dimensional DNA materials and the application of functional nucleic acid-enhancing materials.
Collapse
Affiliation(s)
- Songlin He
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Haotian Deng
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Peiqi Li
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Qinyu Tian
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yongkang Yang
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jingjing Hu
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Gastroenterology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Hao Li
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Tianyuan Zhao
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Hongkun Ling
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yin Liu
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Nankai University Eye Institute, Nankai University, Tianjin, 300071, China.
| | - Shuyun Liu
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Quanyi Guo
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Li H, Li R, He S, Wang Y, Fang W, Jin Y, Yang R, Liu Y, Ye Q, Peng X. An Aptamer-Embedded Two-Dimensional DNA Nanoscale Material with the Property of Cells Recruitment. NANO LETTERS 2023; 23:8399-8405. [PMID: 37339058 DOI: 10.1021/acs.nanolett.3c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Stem cells possess exceptional proliferation and differentiation abilities, making them highly promising for targeted recruitment research in tissue engineering and other clinical applications. DNA is a naturally water-soluble, biocompatible, and highly editable material that is widely used in cell recruitment research. However, DNA nanomaterials face challenges, such as poor stability, complex synthesis processes, and demanding storage conditions, which limit their potential applications. In this study, we designed a highly stable DNA nanomaterial that embeds nucleic acid aptamers in the single strand region. This material has the ability to specifically bind, recruit, and capture human mesenchymal stem cells. The synthesis process involves rolling circle amplification and topological isomerization, and it can be stored for extended periods under varying temperatures and humidity conditions. This DNA material offers high specificity, ease of fabrication, simple preservation, and low cost, providing a novel approach to stem cell recruitment strategies.
Collapse
Affiliation(s)
- Hongshu Li
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Rui Li
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Songlin He
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, P. R. China
| | - Yu Wang
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Wenya Fang
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Yufeng Jin
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Rui Yang
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Yin Liu
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Nankai University Eye Institute, Nankai University, Tianjin 300071, P. R. China
| | - Qing Ye
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, P. R. China
- Nankai University Eye Institute, Nankai University, Tianjin 300071, P. R. China
| | - Xi Peng
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Nankai University Eye Institute, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
4
|
Fang L, Shi C, Wang Y, Xiong Z, Wang Y. Exploring the diverse biomedical applications of programmable and multifunctional DNA nanomaterials. J Nanobiotechnology 2023; 21:290. [PMID: 37612757 PMCID: PMC10464147 DOI: 10.1186/s12951-023-02071-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
DNA nanoparticles hold great promise for a range of biological applications, including the development of cutting-edge treatments and diagnostic tests. Their subnanometer-level addressability enables precise, specific modifications with a variety of chemical and biological entities, making them ideal as diagnostic instruments and carriers for targeted delivery. This paper focuses on the potential of DNA nanomaterials, which offer scalability, programmability, and functionality. For example, they can be engineered to provide highly specific biosensing and bioimaging capabilities and show promise as a platform for disease diagnosis and treatment. Successful operation of various biomedical nanomaterials has been demonstrated both in vitro and in vivo. However, there are still significant challenges to overcome, including the need to improve the scalability and reliability of the technology, and to ensure safety in clinical applications. We discuss these challenges and opportunities in detail and highlight the progress and prospects of DNA nanotechnology for biomedical applications.
Collapse
Affiliation(s)
- Liuru Fang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Zuzhao Xiong
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Huang N, Chen M, Chen S, Dang K, Guo H, Wang X, Yan S, Tian J, Liu Y, Ye Q. A Specific Nucleic Acid Microfluidic Capture Device Based on Stable DNA Nanostructure. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24487-24492. [PMID: 34014634 DOI: 10.1021/acsami.1c04157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Benefiting from superior programmability and good biocompatibility, DNA nanomaterials have received considerable attention with promising prospects in biological detection applications. However, their poor stability and operability severely impede further development of the applications of DNA nanomaterials. Here, a thermally stable DNA nanomesh structure is integrated into a microfluidic chip. The specificity of the nucleic acid microfluidic capture device could reach the single-base mismatch level while capturing the ssDNA sample. The microfluidic chip provides a closed environment for the DNA nanomesh, giving the device excellent storage stability. After 6 months of storage at room temperature, the device still has a specific capture function on ssDNA samples with low concentration. The specific nucleic acid microfluidic capture device can be applied to the enrichment of ctDNA in the future and contribute to the early diagnosis of cancer.
Collapse
|