1
|
Rocha-Flores PE, Chitrakar C, Rodriguez-Lopez O, Ren Y, Joshi-Imre A, Parikh AR, Asan AS, McIntosh JR, Garcia-Sandoval A, Pancrazio JJ, Ecker M, Lu H, Carmel JB, Voit WE. Softening, Conformable, and Stretchable Conductors for Implantable Bioelectronics Interfaces. ADVANCED MATERIALS TECHNOLOGIES 2025; 10:2401047. [PMID: 40191463 PMCID: PMC11968089 DOI: 10.1002/admt.202401047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 04/09/2025]
Abstract
Neural implantable devices serve as electronic interfaces facilitating communication between the body and external electronic systems. These bioelectronic systems ideally possess stable electrical conductivity, flexibility, and stretchability to accommodate dynamic movements within the body. However, achieving both high electrical conductivity and mechanical compatibility remains a challenge. Effective electrical conductors tend to be rigid and stiff, leading to a substantial mechanical mismatch with bodily tissues. On the other hand, highly stretchable polymers, while mechanically compatible, often suffer from limited compatibility with lithography techniques and reduced electrical stability. Therefore, there exists a pressing need to develop electromechanically stable neural interfaces that enable precise communication with biological tissues. In this study, a polymer that is softening, flexible, conformal, and compatible with lithography to microfabricate perforated thin-film architectures was utilized. These architectures offer stretchability and improved mechanical compatibility. Three distinct geometries were evaluated both mechanically and electrically under in-vitro conditions that simulate physiological environments. Notably, the Peano structure demonstrates minimal changes in resistance, varying less than 1.5× even when subjected to almost 150% strain. Furthermore, devices exhibit a maximum mechanical elongation before fracture, reaching 220%. Finally, the application of multi-electrode spinal cord leads employing titanium nitride for neural stimulation in rat models was demonstrated.
Collapse
Affiliation(s)
- Pedro E Rocha-Flores
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Chandani Chitrakar
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76203, USA
| | - Ovidio Rodriguez-Lopez
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Yao Ren
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson Texas, 75080, USA
| | - Alexandra Joshi-Imre
- The Office of Research and Innovation, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Ankit R Parikh
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson Texas, 75080, USA
| | - Ahmet S Asan
- Departments of Neurology, Columbia University, New York, NY, USA
| | - James R McIntosh
- Departments of Neurology, Columbia University, New York, NY, USA
| | - Aldo Garcia-Sandoval
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
- The Office of Research and Innovation, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76203, USA
| | - Hongbing Lu
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson Texas, 75080, USA
| | - Jason B Carmel
- Departments of Neurology, Columbia University, New York, NY, USA
| | - Walter E Voit
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson Texas, 75080, USA
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
2
|
Ballinas-Indilí R, Sánchez Vergara ME, Rosales-Amezcua SC, Hernández Méndez JA, López-Mayorga B, Miranda-Ruvalcaba R, Álvarez-Toledano C. Synthesis of New Ruthenium Complexes and Their Exploratory Study as Polymer Hybrid Composites in Organic Electronics. Polymers (Basel) 2024; 16:1338. [PMID: 38794531 PMCID: PMC11125087 DOI: 10.3390/polym16101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Polymeric hybrid films, for their application in organic electronics, were produced from new ruthenium indanones in poly(methyl methacrylate) (PMMA) by the drop-casting procedure. Initially, the synthesis and structural characterization of the ruthenium complexes were performed, and subsequently, their properties as a potential semiconductor material were explored. Hence hybrid films in ruthenium complexes were deposited using PMMA as a polymeric matrix. The hybrid films were characterized by infrared spectrophotometry and atomic force microscopy. The obtained results confirmed that the presence of the ruthenium complexes enhanced the mechanical properties in addition to increasing the transmittance, favoring the determination of their optical parameters. Both hybrid films exhibited a maximum stress around 10.5 MPa and a Knoop hardness between 2.1 and 18.4. Regarding the optical parameters, the maximum transparency was obtained at wavelengths greater than 590 nm, the optical band gap was in the range of 1.73-2.24 eV, while the Tauc band gap was in the range of 1.68-2.17 eV, and the Urbach energy was between 0.29 and 0.50 eV. Consequently, the above comments are indicative of an adequate semiconductor behavior; hence, the target polymeric hybrid films must be welcomed as convenient candidates as active layers or transparent electrodes in organic electronics.
Collapse
Affiliation(s)
- Ricardo Ballinas-Indilí
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Mexico (R.M.-R.)
| | - María Elena Sánchez Vergara
- Facultad de Ingeniería, Universidad Anáhuac México, Av. Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Mexico
| | - Saulo C. Rosales-Amezcua
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico (C.Á.-T.)
| | - Joaquín André Hernández Méndez
- Facultad de Ingeniería, Universidad Anáhuac México, Av. Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Mexico
| | - Byron López-Mayorga
- Escuela de Química, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, 11 avenida, Ciudad de Guatemala 01012, Guatemala;
| | - René Miranda-Ruvalcaba
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Mexico (R.M.-R.)
| | - Cecilio Álvarez-Toledano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico (C.Á.-T.)
| |
Collapse
|
3
|
Yu W, Gong K, Li Y, Ding B, Li L, Xu Y, Wang R, Li L, Zhang G, Lin S. Flexible 2D Materials beyond Graphene: Synthesis, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105383. [PMID: 35048521 DOI: 10.1002/smll.202105383] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/30/2021] [Indexed: 06/14/2023]
Abstract
2D materials are now at the forefront of state-of-the-art nanotechnologies due to their fascinating properties and unique structures. As expected, low-cost, high-volume, and high-quality 2D materials play an important role in the applications of flexible devices. Although considerable progress has been achieved in the integration of a series of novel 2D materials beyond graphene into flexible devices, a lot remains to be known. At this stage of their development, the key issues concern how to make further improvements to high-performance and scalable-production. Herein, recent progress in the quest to improve the current state of the art for 2D materials beyond graphene is reviewed. Namely, the properties and synthesis techniques of 2D materials are first introduced. Then, both the advantages and challenges of these 2D materials for flexible devices are also highlighted. Finally, important directions for future advancements toward efficient, low-cost, and stable flexible devices are outlined.
Collapse
Affiliation(s)
- Wenzhi Yu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
- Institute of Physics, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Kaiwen Gong
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Yanyong Li
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Binbin Ding
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Lei Li
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Yongkang Xu
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Rong Wang
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Lianbi Li
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Shenghuang Lin
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| |
Collapse
|
4
|
Wei Z, Sun T, Shimoda S, Chen Z, Chen X, Wang H, Huang Q, Fukuda T, Shi Q. Bio-inspired engineering of a perfusion culture platform for guided three-dimensional nerve cell growth and differentiation. LAB ON A CHIP 2022; 22:1006-1017. [PMID: 35147637 DOI: 10.1039/d1lc01149a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Collagen provides a promising environment for 3D nerve cell culture; however, the function of perfusion culture and cell-growth guidance is difficult to integrate into such an environment to promote cell growth. In this paper, we develop a bio-inspired design method for constructing a perfusion culture platform for guided nerve cell growth and differentiation in collagen. Based on the anatomical structure of peripheral neural tissue, a biomimetic porous structure (BPS) is fabricated by two-photon polymerization of IP-Visio. The micro-capillary effect is then utilized to facilitate the self-assembly of cell encapsulated collagen into the BPS. 3D perfusion culture can be rapidly implemented by inserting the cell-filled BPS into a pipette tip connected with syringe pumps. Furthermore, we investigate the nerve cell behavior in the BPS. 7-channel aligned cellular structures surrounded with a Schwann cell layer can be stably formed after a long-time perfusion culture. Differentiation of PC12 cells and mouse neural stem cells shows 3D neurite outgrowth alignment and elongation in collagen. The calcium activities of differentiated PC12 cells are visualized for confirming the preliminary formation of cell function. These results demonstrate that the proposed bio-inspired 3D cell culture platform with the advantages of miniaturization, structure complexity and perfusion has great potential for future application in the study of nerve regeneration and drug screening.
Collapse
Affiliation(s)
- Zihou Wei
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Tao Sun
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shingo Shimoda
- Center of Brain Science (CBS), CBS-TOYOTA Collaboration Center (BTCC), Intelligent Behaviour Control Unit, Riken, Nagoya 463-0003, Japan
| | - Zhe Chen
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xie Chen
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Huaping Wang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Qiang Huang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Toshio Fukuda
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Qing Shi
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Zhang BC, Shi YH, Mao J, Huang SY, Shao ZB, Zheng CJ, Jie JS, Zhang XH. Single-Crystalline Silicon Frameworks: A New Platform for Transparent Flexible Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008171. [PMID: 33963781 DOI: 10.1002/adma.202008171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Single-crystalline silicon (sc-Si) is the dominant semiconductor material for the modern electronics industry. Despite their excellent photoelectric and electronic properties, the rigidity, brittleness, and nontransparency of commonly used silicon wafers limit their application in transparent flexible optoelectronics. In this study, a new type of Si microstructure, named single-crystalline Si frameworks (sc-SiFs), is developed, through a combination of wet-etching and microfabrication technologies. The sc-SiFs are self-supported, flexible, lightweight, tailorable, and highly transparent. They can withstand a small bending radius of less than 0.5 mm and have a transparency of up to 96% in all wavelength ranges, owing to the hollowed-out framework structures. Thus, the sc-SiFs provide a new platform for high-performance transparent flexible optoelectronics. Taking transparent flexible photodetectors (TFPDs) as an example, substrate-free and self-driven TFPDs are achieved based on the sc-SiFs. The devices exhibit superior performance compared to other reported TFPDs and reveal the great potential for integrated optoelectronic applications. The development of sc-SiFs paves the way toward the fabrication of high-performance transparent flexible devices for a host of applications, including e-skins, the Internet of Things, transparent flexible displays, and artificial visual cortexes.
Collapse
Affiliation(s)
- Bing-Chang Zhang
- School of Optoelectronic Science and Engineering, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Yi-Hao Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jie Mao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Si-Yi Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhi-Bin Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Cai-Jun Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 610054, P. R. China
| | - Jian-Sheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
6
|
Abstract
With the rapid development of flexible electronic devices (especially flexible LCD/OLED), flexible transparent electrodes (FTEs) with high light transmittance, high electrical conductivity, and excellent stretchability have attracted extensive attention from researchers and businesses. FTEs serve as an important part of display devices (touch screen and display), energy storage devices (solar cells and super capacitors), and wearable medical devices (electronic skin). In this paper, we review the recent progress in the field of FTEs, with special emphasis on metal materials, carbon-based materials, conductive polymers (CPs), and composite materials, which are good alternatives to the traditional commercial transparent electrode (i.e., indium tin oxide, ITO). With respect to production methods, this article provides a detailed discussion on the performance differences and practical applications of different materials. Furthermore, major challenges and future developments of FTEs are also discussed.
Collapse
|