1
|
Huo J, Zhang G, Zhang X, Yuan X, Guo S. Flexible Fluorinated Graphene/Poly(vinyl Alcohol) Films toward High Thermal Management Capability. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37922105 DOI: 10.1021/acsami.3c12754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Graphene is widely used in heat dissipation, owing to its inherently high in-plane thermal conductivity and excellent mechanical properties. However, its poor cross-plane thermal conductivity limits its use in some electronic applications. The electron distribution of graphene and the interaction with the base material can be greatly altered by introducing F, the most electronegative element, giving fluorinated graphene oxide (FG) with a high thermal conductivity. Herein, FG is prepared by grafting F atoms onto the surface of graphene oxide in a low-temperature solid-phase reaction with poly(vinylidene fluoride) as a fluorine source. This method can effectively avoid the use of dangerous substances such as HF and F2. The FG dispersion and aqueous poly(vinyl alcohol) (PVA) solution are sequentially vacuum-filtered to obtain the FG/PVA composite film. After natural drying and hot-pressing, the thermal conductivity of the N-FG/PVA film is enhanced by the hydrogen bond between F of FG and the hydroxyl group of PVA. The in-plane and cross-plane thermal conductivity of an N-FG/PVA film containing 10.4 wt % FG are 7.13 and 1.42 W m-1 k-1, respectively. The film has a tensile strength of 60 MPa and an elongation at a break of 28%, which is promising for the thermal management of flexible electronic devices.
Collapse
Affiliation(s)
- Jinghao Huo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoqiang Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xinyi Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shouwu Guo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an 710021, China
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Jiao C, Wang C, Wang M, Pan J, Gao C, Wang Q. Finite Element Analysis Model of Electronic Skin Based on Surface Acoustic Wave Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030465. [PMID: 36770426 PMCID: PMC9919964 DOI: 10.3390/nano13030465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 06/01/2023]
Abstract
In recent years, with the rapid development of flexible electronic devices, researchers have a great interest in the research of electronic skin (e-skin). Traditional e-skin, which is made of rigid integrated circuit chips, not only limits the overall flexibility, but also consumes a lot of power and poses certain security risks to the human body. In this paper, a wireless passive e-skin is designed based on the surface acoustic wave sensor (SAWS) of lithium niobate piezoelectric film. The e-skin has the advantages of small size, high precision, low power consumption, and good flexibility. With the multi-sensing function of stress, temperature, and sweat ion concentration, etc., the newly designed e-skin is a sensor platform for a wide range of external stimuli, and the measurement results can be directly presented in frequency. In order to explore the characteristic parameters and various application scenarios of the SAWS, finite element analysis is carried out using the simulation software; the relationship between the SAWS and various influencing factors is explored, and the related performance curve is obtained. These simulation results provide important reference and experimental guidance for the design and preparation of SAW e-skin.
Collapse
Affiliation(s)
- Chunxiao Jiao
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Chengkai Wang
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Meng Wang
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jinghong Pan
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Chao Gao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Qi Wang
- College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
3
|
Kim Y, Suh JM, Shin J, Liu Y, Yeon H, Qiao K, Kum HS, Kim C, Lee HE, Choi C, Kim H, Lee D, Lee J, Kang JH, Park BI, Kang S, Kim J, Kim S, Perozek JA, Wang K, Park Y, Kishen K, Kong L, Palacios T, Park J, Park MC, Kim HJ, Lee YS, Lee K, Bae SH, Kong W, Han J, Kim J. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 2022; 377:859-864. [PMID: 35981034 DOI: 10.1126/science.abn7325] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Recent advances in flexible and stretchable electronics have led to a surge of electronic skin (e-skin)-based health monitoring platforms. Conventional wireless e-skins rely on rigid integrated circuit chips that compromise the overall flexibility and consume considerable power. Chip-less wireless e-skins based on inductor-capacitor resonators are limited to mechanical sensors with low sensitivities. We report a chip-less wireless e-skin based on surface acoustic wave sensors made of freestanding ultrathin single-crystalline piezoelectric gallium nitride membranes. Surface acoustic wave-based e-skin offers highly sensitive, low-power, and long-term sensing of strain, ultraviolet light, and ion concentrations in sweat. We demonstrate weeklong monitoring of pulse. These results present routes to inexpensive and versatile low-power, high-sensitivity platforms for wireless health monitoring devices.
Collapse
Affiliation(s)
- Yeongin Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Jun Min Suh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiho Shin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yunpeng Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hanwool Yeon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Kuan Qiao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hyun S Kum
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - Chansoo Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Han Eol Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju 54896, South Korea
| | - Chanyeol Choi
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hyunseok Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Doyoon Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jaeyong Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ji-Hoon Kang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bo-In Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sungsu Kang
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea
| | - Jihoon Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea
| | - Sungkyu Kim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, South Korea
| | - Joshua A Perozek
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kejia Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,School of Micro-Nano Electronics, Zhejiang University, Hangzhou 311200 Zhejiang, People's Republic of China
| | - Yongmo Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kumar Kishen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lingping Kong
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomás Palacios
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
| | - Min-Chul Park
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Hyung-Jun Kim
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea.,Division of Nano and Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, South Korea
| | - Yun Seog Lee
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, South Korea
| | - Kyusang Lee
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Sang-Hoon Bae
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, MO 63139, USA
| | - Wei Kong
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Materials Science and Engineering, Westlake University, Hangzhou 310024 Zhejiang, People's Republic of China
| | - Jiyeon Han
- Skincare Division, Amorepacific R&D Center, Yongin 17074, South Korea
| | - Jeehwan Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Feng CP, Wei F, Sun KY, Wang Y, Lan HB, Shang HJ, Ding FZ, Bai L, Yang J, Yang W. Emerging Flexible Thermally Conductive Films: Mechanism, Fabrication, Application. NANO-MICRO LETTERS 2022; 14:127. [PMID: 35699776 PMCID: PMC9198190 DOI: 10.1007/s40820-022-00868-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/21/2022] [Indexed: 05/27/2023]
Abstract
Effective thermal management is quite urgent for electronics owing to their ever-growing integration degree, operation frequency and power density, and the main strategy of thermal management is to remove excess energy from electronics to outside by thermal conductive materials. Compared to the conventional thermal management materials, flexible thermally conductive films with high in-plane thermal conductivity, as emerging candidates, have aroused greater interest in the last decade, which show great potential in thermal management applications of next-generation devices. However, a comprehensive review of flexible thermally conductive films is rarely reported. Thus, we review recent advances of both intrinsic polymer films and polymer-based composite films with ultrahigh in-plane thermal conductivity, with deep understandings of heat transfer mechanism, processing methods to enhance thermal conductivity, optimization strategies to reduce interface thermal resistance and their potential applications. Lastly, challenges and opportunities for the future development of flexible thermally conductive films are also discussed.
Collapse
Affiliation(s)
- Chang-Ping Feng
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, People's Republic of China.
| | - Fang Wei
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Kai-Yin Sun
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| | - Yan Wang
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, People's Republic of China
| | - Hong-Bo Lan
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, People's Republic of China.
| | - Hong-Jing Shang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Fa-Zhu Ding
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Lu Bai
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jie Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Wei Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
5
|
Ruan K, Gu J. Ordered Alignment of Liquid Crystalline Graphene Fluoride for Significantly Enhancing Thermal Conductivities of Liquid Crystalline Polyimide Composite Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00491] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kunpeng Ruan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Junwei Gu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| |
Collapse
|
6
|
Phosphor nitrile functionalized UiO-66-NH2/graphene hybrid flame retardants for fire safety of epoxy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Chen X, Fan K, Liu Y, Li Y, Liu X, Feng W, Wang X. Recent Advances in Fluorinated Graphene from Synthesis to Applications: Critical Review on Functional Chemistry and Structure Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101665. [PMID: 34658081 DOI: 10.1002/adma.202101665] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/27/2021] [Indexed: 05/11/2023]
Abstract
Fluorinated graphene (FG), as an emerging member of the graphene derivatives family, has attracted wide attention on account of its excellent performances and underlying applications. The introduction of a fluorine atom, with the strongest electronegativity (3.98), greatly changes the electron distribution of graphene, resulting in a series of unique variations in optical, electronic, magnetic, interfacial properties and so on. Herein, recent advances in the study of FG from synthesis to applications are introduced, and the relationship between its structure and properties is summarized in detail. Especially, the functional chemistry of FG has been thoroughly analyzed in recent years, which has opened a universal route for the functionalization and even multifunctionalization of FG toward various graphene derivatives, which further broadens its applications. Moreover, from a particular angle, the structure engineering of FG such as the distribution pattern of fluorine atoms and the regulation of interlayer structure when advanced nanotechnology gets involved is summarized. Notably, the elaborated structure engineering of FG is the key factor to optimize the corresponding properties for potential applications, and is also an up-to-date research hotspot and future development direction. Finally, perspectives and prospects for the problems and challenges in the study of FG are put forward.
Collapse
Affiliation(s)
- Xinyu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kun Fan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yu Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P. R. China
| | - Xu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
8
|
Greatly improved thermal conductivity and electrical insulation for PVA composites via introducing functional carbon nitride nanosheets. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Zhao LH, Jin YF, Wang ZG, Ren JW, Jia LC, Yan DX, Li ZM. Highly Thermally Conductive Fluorinated Graphene/Aramid Nanofiber Films with Superior Mechanical Properties and Thermostability. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Li-Hua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Yi-Fei Jin
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-Guo Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jun-Wen Ren
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Li-Chuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Ding-Xiang Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Han W, Chen M, Li W, Ge C, Zhang R, Zeng H, Zhang X. Directly Grown Polystyrene Nanospheres on Graphene Oxide Enable Efficient Thermal Management. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weifang Han
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, PR China
| | - Mengyuan Chen
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, PR China
| | - Wei Li
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, PR China
| | - Chunhua Ge
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Rui Zhang
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Huarong Zeng
- Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Xiangdong Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| |
Collapse
|
11
|
Wang Y, Zhang X, Ding X, Li Y, Wu B, Zhang P, Zeng X, Zhang Q, Du Y, Gong Y, Zheng K, Tian X. Stitching Graphene Sheets with Graphitic Carbon Nitride: Constructing a Highly Thermally Conductive rGO/g-C 3N 4 Film with Excellent Heating Capability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6699-6709. [PMID: 33523647 DOI: 10.1021/acsami.0c22057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Driven by the evolution of electronic packaging technology for high-dense integration of high-power, high-frequency, and multi-function devices in modern electronics, thermal management materials have become a crucial component for guaranteeing the stable and reliable operation of devices. Because of its admirable in-plane thermal conductivity, graphene is considered as a desired thermal conductor. However, the promise of graphene films has been greatly weakened as the existence of grain boundaries lead to a high extent of phonon scattering. Here, a stitching strategy is adopted to fabricate an rGO/g-C3N4 film, where 2D g-C3N4 works as a linker to covalently connect adjacent rGO sheets for expanding the size of graphene and forming an in-plane rGO/g-C3N4 heterostructure. The in-plane thermal conductivity of the rGO/g-C3N4 film reaches 41.2 W m-1 K-1 at a g-C3N4 content of only 1 wt %, which increased by 17.3% compared to pristine rGO. The interfaced thermal resistance between rGO and g-C3N4 is further examined by non-equilibrium molecular dynamics simulations. Furthermore, owing to the unique light absorption and welding ability of g-C3N4, the rGO/g-C3N4 film presents superior solar-thermal and electric-thermal responses to controllably regulate the chip temperature against overcooling. This work provides a facile approach to construct a large-sized rGO sheet and combines heat dissipation and heating capability in the same thermal management material for future electronics.
Collapse
Affiliation(s)
- Yanyan Wang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xian Zhang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Xin Ding
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Ya Li
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230026, China
| | - Bin Wu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230026, China
| | - Ping Zhang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xiaoliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qian Zhang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yuhang Du
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yi Gong
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Kang Zheng
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Xingyou Tian
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
12
|
Vu MC, Jeong T, Kim J, Choi WK, Kim DH, Kim S. 3D
printing of copper particles and poly(methyl methacrylate) beads containing poly(lactic acid) composites for enhancing thermomechanical properties. J Appl Polym Sci 2020. [DOI: 10.1002/app.49776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Minh Canh Vu
- Department of Polymer Science and Engineering Korea National University of Transportation Chungju Republic of Korea
| | - Tae‐Hyeong Jeong
- Department of Polymer Science and Engineering Korea National University of Transportation Chungju Republic of Korea
| | - Jun‐Beom Kim
- Department of Polymer Science and Engineering Korea National University of Transportation Chungju Republic of Korea
| | - Won Kook Choi
- Center for Optoelectronic Materials and Devices Korea Institute of Science and Technology Seoul Republic of Korea
| | - Dae Hoon Kim
- Department of Polymer Science and Engineering Korea National University of Transportation Chungju Republic of Korea
- Department of Tests and Certification Korea Conformity Laboratories Incheon Republic of Korea
| | - Sung‐Ryong Kim
- Department of Polymer Science and Engineering Korea National University of Transportation Chungju Republic of Korea
| |
Collapse
|