1
|
Ali S, Baloch SB, Bernas J, Konvalina P, Onyebuchi EF, Naveed M, Ali H, Jamali ZH, Nezhad MTK, Mustafa A. Phytotoxicity of radionuclides: A review of sources, impacts and remediation strategies. ENVIRONMENTAL RESEARCH 2024; 240:117479. [PMID: 37884073 DOI: 10.1016/j.envres.2023.117479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/01/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Various anthropogenic activities and natural sources contribute to the presence of radioactive materials in the environment, posing a serious threat to phytotoxicity. Contamination of soil and water by radioactive isotopes degrades the environmental quality and biodiversity. They persist in soils for a considerable amount of time and disturb the fauna and flora of any affected area. Hence, their removal from the contaminated medium is inevitable to prevent their entry into the food chain and the organisms at higher levels of the food chain. Physicochemical methods for radioactive element remediation are effective; however, they are not eco-friendly, can be expensive and impractical for large-scale remediation. Contrastingly, different bioremediation approaches, such as phytoremediation using appropriate plant species for removing the radionuclides from the polluted sites, and microbe-based remediation, represent promising alternatives for cleanup. In this review, sources of radionuclides in soil as well as their hazardous impacts on plants are discussed. Moreover, various conventional physicochemical approaches used for remediation discussed in detail. Similarly, the effectiveness and superiority of various bioremediation approaches, such as phytoremediation and microbe-based remediation, over traditional approaches have been explained in detail. In the end, future perspectives related to enhancing the efficiency of the phytoremediation process have been elaborated.
Collapse
Affiliation(s)
- Shahzaib Ali
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Sadia Babar Baloch
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Jaroslav Bernas
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic.
| | - Petr Konvalina
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Eze Festus Onyebuchi
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hassan Ali
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zameer Hussain Jamali
- College of Environmental Science, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Mohammad Tahsin Karimi Nezhad
- Department of Forest Ecology, The Silva Tarouca Research Institute for Landscape and Ornamental 13 Gardening, Lidicka, 25/27, Brno, 60200, Czech Republic
| | - Adnan Mustafa
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences Guangzhou, 510650, China.
| |
Collapse
|
2
|
Prakash O, Tiwari S, Maiti P. Fluoropolymers and Their Nanohybrids As Energy Materials: Application to Fuel Cells and Energy Harvesting. ACS OMEGA 2022; 7:34718-34740. [PMID: 36211045 PMCID: PMC9535728 DOI: 10.1021/acsomega.2c04774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The current review article provides deep insight into the fluoropolymers and their applications in energy technology, especially in the field of energy harvesting and the development of fuel cell electrolyte polymeric membranes. Fluoropolymers have gained wide attention in the field of energy applications due to their versatile properties. The incorporation of nanofillers within the fluoropolymer to develop the nanohybrid results in an enhancement in the properties, like thermal, mechanical, gas permeation, different fuel cross-over phenomena through the membrane, hydrophilic/hydrophobic nature, ion transport, and piezo-electric properties for fabricating energy devices. The properties of nanohybrid materials/membranes are influenced by several factors, such as type of filler, their size, amount of filler, level of dispersion, surface acidity, shape, and formation of networking within the polymer matrix. Fluoropolymer-based nanohybrids have replaced several commercial materials due to their chemical inertness, better efficacy, and durability. The addition of certain electroactive fillers in the polymer matrix enhances the polar phase, which enhances the applicability of the hybrid for fuel cell and energy-harvesting applications. Poly(vinylidene fluoride) is one of the remarkable fluoropolymers in the field of energy applications such as fuel cell and piezoelectric energy harvesting. In the present review, a detailed discussion of the different kinds of nanofillers and their role in energy harvesting and fuel cell electrolyte membranes is projected.
Collapse
Affiliation(s)
- Om Prakash
- Kashi
Naresh Government PG College Gyanpur, Bhadohi 221304, India
| | - Shivam Tiwari
- School
of the Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Pralay Maiti
- School
of the Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
3
|
Yadav PK, Prakash O, Ray B, Maiti P. Functionalized polythiophene for corrosion inhibition and photovoltaic application. J Appl Polym Sci 2021. [DOI: 10.1002/app.51306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pravesh Kumar Yadav
- School of Materials Science and Technology Indian Institute of Technology (BHU) Varanasi India
| | - Om Prakash
- School of Materials Science and Technology Indian Institute of Technology (BHU) Varanasi India
| | - Biswajit Ray
- Department of Chemistry, Institute of Science Banaras Hindu University Varanasi India
| | - Pralay Maiti
- School of Materials Science and Technology Indian Institute of Technology (BHU) Varanasi India
| |
Collapse
|
4
|
Pakhira M, Chatterjee DP, Mallick D, Ghosh R, Nandi AK. Reversible Stimuli-Dependent Aggregation-Induced Emission from a "Nonfluorescent" Amphiphilic PVDF Graft Copolymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4953-4963. [PMID: 33843235 DOI: 10.1021/acs.langmuir.1c00310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A poly(vinylidine fluoride) graft random copolymer of t-butyl aminoethyl methacrylate (tBAEMA) and oligo(ethylene glycol) methyl ether methacrylate (OEGMA, Mn = 300) [PVDF-g-P(tBAEMA-ran-OEGMA), PVBO] is synthesized by atom transfer radical polymerization (ATRP), and PVBO is fractionated to get a highly water-soluble fraction (PVBO-1) showing a reversible on/off fluorescence behavior with gradual increase and decrease in pH, respectively, achieving a maximum quantum yield of 0.18 at pH = 12. PVBO-1 dissolved in water shows large multimicellar aggregates (MMcA), but at pH 12, crumbling of larger aggregates to much smaller micelles occurs, forming nonconjugated polymer dots (NCPDs), as supported by transmission electron microscopy and dynamic light scattering study. The reversible fluorescence on/off behavior also occurs with the decrease and increase of temperature. Theoretical study indicates that, at high pH, most of the amino groups become neutral and exhibit a strong tendency to form aggregates from crowding of a large number of carbonyl and amine groups, minimizing the HOMO-LUMO gap, showing an absorption peak at the visible region, and generating aggregation-induced emission.
Collapse
Affiliation(s)
- Mahuya Pakhira
- Polymer Science Unit, School of Materials Science, Indian Association for the cultivation of Science, Jadavpur, Kolkata 700032, India
| | | | - Dibyendu Mallick
- Department of Chemistry, Presidency University, Kolkata 700073, India
| | - Radhakanta Ghosh
- Polymer Science Unit, School of Materials Science, Indian Association for the cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arun K Nandi
- Polymer Science Unit, School of Materials Science, Indian Association for the cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Yang B, Pan D, Sun L, Chen S, Wu W, Li B. Fabrication of Polymer Composite Fibers Embedding Ultra-Long Micro/Nanowires. NANOMATERIALS 2021; 11:nano11040939. [PMID: 33917057 PMCID: PMC8067675 DOI: 10.3390/nano11040939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
Fabrication of polymer composite fibers embedding ultra-long micro/nanowires via an iterative melt co-drawing and bundling technique is reported in this study. The poly(methyl methacrylate) (PMMA) porous array templates were prepared with section-cutting the PMMA/polystyrene (PS) (shell/core) composite fibers and dissolution of inner PS. The results showed that the PS cores or pores in the PMMA matrix are regularly arranged with hexagonal, and their diameter and spacing exhibits a uniform distribution. Especially, the core diameter can be precisely controlled from millimeter-scale to nanometer-scale by multi-step melt co-drawing. Based on the PMMA porous array templates, the Cu nanowires were successfully prepared by electrochemical deposition. Moreover, to fabricate PMMA ultra-long micro/nanowires, the composite fibers with converse shell/core component of PS/PMMA were initially prepared, and then the outer PS was dissolved. The obtained PMMA micro/nanowires were characterized with smooth complete orientation structure. The study provides an experimental basis for fabricating such polymer composite fibers, micro/nano porous array templates, and micro/nanowires with precise and controllable manner to meet the real application requirements.
Collapse
Affiliation(s)
- Bo Yang
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; (B.Y.); (D.P.); (L.S.); (W.W.); (B.L.)
| | - Dawei Pan
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; (B.Y.); (D.P.); (L.S.); (W.W.); (B.L.)
| | - Laixi Sun
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; (B.Y.); (D.P.); (L.S.); (W.W.); (B.L.)
| | - Shufan Chen
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; (B.Y.); (D.P.); (L.S.); (W.W.); (B.L.)
- Correspondence: ; Tel.: +86-081-62480872
| | - Weidong Wu
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; (B.Y.); (D.P.); (L.S.); (W.W.); (B.L.)
- IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Li
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; (B.Y.); (D.P.); (L.S.); (W.W.); (B.L.)
| |
Collapse
|