1
|
Nie Z, Huang Z, Wu Z, Xing Y, Yu F, Wang R. SERS-based approaches in the investigation of bacterial metabolism, antibiotic resistance, and species identification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:126051. [PMID: 40090104 DOI: 10.1016/j.saa.2025.126051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is an inelastic scattering phenomenon that occurs when photons interact with substances, providing detailed molecular structure information. It exhibits various advantages including high sensitivity, specificity, and multiple-detection capabilities, which make it particularly effective in bacterial detection and antibiotic resistance research. In this review, we review the recent development of SERS-based approaches in the investigation of bacterial metabolism, antibiotic resistance, and species identification. Although the promising applications have been realized in clinical microbiology and diagnostics, several challenges still limit the further development, including signal variability, the complexity of spectral data interpretation, and the lack of standardized protocols. To overcome these obstacles, more reproducible and standardized methodologies, particularly in nanomaterial design and experimental condition optimization. Furthermore, the integration of SERS with machine learning and artificial intelligence can automate spectral analysis, improving the efficiency and accuracy of bacterial species identification, resistance marker detection, and metabolic monitoring. Combining SERS with other analytical techniques, such as mass spectrometry, fluorescence microscopy, or genomic sequencing, could provide a more comprehensive understanding of bacterial physiology and resistance mechanisms. As SERS technology advances, its applications are expected to extend beyond traditional microbiology to areas like environmental monitoring, food safety, and personalized medicine. In particular, the potential for SERS to be integrated into point-of-care diagnostic devices offers significant promise for enhancing diagnostics in resource-limited settings, providing cost-effective, rapid, and accessible solutions for bacterial infection and resistance detection.
Collapse
Affiliation(s)
- Zhun Nie
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Zhijun Huang
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Zhongying Wu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| | - Rui Wang
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, Key Laboratory of Haikou Trauma, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
2
|
Bi L, Zhang H, Mu C, Sun K, Chen H, Zhang Z, Chen L. Paper-based SERS chip with adaptive attention neural network for pathogen identification. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138694. [PMID: 40424808 DOI: 10.1016/j.jhazmat.2025.138694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/06/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
High-speed and accuracy identification of pathogens has become increasingly critical in both individual patient care and public health. Artificial intelligence (AI)-assisted surface-enhanced Raman scattering (SERS) biosensors enable simultaneous identification of multiple pathogens. However, there are still problems such as low accuracy and limited diversity in bacterial fingerprints. To this end, we present a novel multi-branch adaptive attention convolutional neural network (MBAA-CNN)-assisted paper-based SERS chip for prompt and reliable pathogen discrimination. In the approach, we employed a dual-function molecule 4-mercaptophenylboronic acid (4-MPBA) to capture bacteria and enhance Raman spectra diversity, referring as 4-MPBA labeled mode (label mode). Meanwhile, we utilized the K-means algorithm to identify pathogens in the label mode, producing much higher accuracy compared to label-free mode (n = 2000). Furthermore, we acquired 98.6 % accuracy at all pathogen species and 99.5 % accuracy at the antibiotic-resistant and sensitive strains (n = 10,000) using MBAA-CNN. The superior performance of MBAA-CNN was further validated through comparisons with traditional machine learning models, particularly in terms of loss value, speed and accuracy. We envision the developed approach has potential for early culture-free diagnosis of pathogens and real-time monitoring of microbial contamination in water environment.
Collapse
Affiliation(s)
- Liyan Bi
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264005, China.
| | - Huangruici Zhang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China
| | - Chenyu Mu
- School of Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Kaidi Sun
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China
| | - Hao Chen
- School of Environmental and Material Engineering, Yantai University, Yantai 264003, China
| | - Zhiyang Zhang
- Shandong Key Laboratory of Coastal Environmental Processes, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
3
|
Chen B, Gao J, Sun H, Chen Z, Qiu X. Innovative applications of SERS in precision medicine: In situ and real-time live imaging. Talanta 2025; 294:128225. [PMID: 40327985 DOI: 10.1016/j.talanta.2025.128225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025]
Abstract
Surface-enhanced Raman scattering (SERS), a molecular spectroscopic technique with high sensitivity and specificity, has demonstrated groundbreaking potential in precision medicine in recent years. This review systematically summarizes recent advancements in SERS technology for in situ and real-time live imaging, focusing on its core value in early tumor diagnosis, intraoperative navigation, drug delivery monitoring, and dynamic pathological analysis. By optimizing nanoscale probe design-including targeted functionalization, enhanced biocompatibility, and integration with imaging systems-SERS overcomes the sensitivity and spatiotemporal resolution limitations of traditional imaging techniques, enabling precise capture and dynamic tracking of molecular events in live biological environments. The article further analyzes challenges in clinical translation, such as signal stability in complex biological environments, multimodal imaging coordination, and standardized data processing methods. Future directions for personalized therapy and intelligent integrated diagnostics are also discussed.
Collapse
Affiliation(s)
- Biqing Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang, 150081, PR China.
| | - Jiayin Gao
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Haizhu Sun
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Zhi Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Xiaohong Qiu
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang, 150081, PR China.
| |
Collapse
|
4
|
Wang Y, Zhang Z, Sun Y, Wu H, Luo L, Song Y. Recent Advances in Surface-Enhanced Raman Scattering for Pathogenic Bacteria Detection: A Review. SENSORS (BASEL, SWITZERLAND) 2025; 25:1370. [PMID: 40096117 PMCID: PMC11902806 DOI: 10.3390/s25051370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Bacterial infection is one of the common infectious diseases in clinical practice, and the research on efficient detection of bacteria has attracted much attention in recent years. Currently, the traditional detection methods of bacteria are mainly based on cell culturing, microscopic examination, and molecular biology techniques, all of which have the disadvantages of complex operation and time-consuming. Surface-enhanced Raman spectroscopy (SERS) technology has shown prominent advantages in bacterial detection and identification because of the merit of high-sensitivity, fast detection and unique molecular fingerprint spectrum. This paper mainly investigates and discusses the application of SERS in bacterial detection, and systematically reviews the progress of SERS applications, including nano-enhanced dielectric materials of SERS, signal amplification of SERS labeled molecules, and the integration of SERS with microfluidic technology. Finally, the paper analyzes the challenges associated with the application of SERS in bacterial detection and offers insights into future development trends.
Collapse
Affiliation(s)
- Yimai Wang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China; (Y.W.); (H.W.)
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.Z.); (Y.S.)
| | - Zhiqiang Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.Z.); (Y.S.)
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou 215163, China
| | - Yixiang Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.Z.); (Y.S.)
| | - Huimin Wu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China; (Y.W.); (H.W.)
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.Z.); (Y.S.)
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China; (Y.W.); (H.W.)
| | - Yizhi Song
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Z.Z.); (Y.S.)
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou 215163, China
| |
Collapse
|
5
|
Simsek UB, Sakir M, Colak SG, Demir M. MXene as SERS-Active Substrate: Impact of Intrinsic Properties and Performance Analysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:91-109. [PMID: 39721057 DOI: 10.1021/acsami.4c17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
A new member is incorporated into the SERS active materials family daily as a consequence of advances in materials science. Furthermore, it has been demonstrated that MXenes, which display remarkable physicochemical characteristics, are also encompassed within this family. This Review offers a comprehensive and systematic assessment of the potential of MXene structures in the context of SERS applications. First, the historical development of SERS-active substrates and the evolution of various substrates over time are analyzed. Subsequently, the formation and structural properties of MXene structures were subjected to a comprehensive and detailed examination. The principal objective of this Review is to elucidate the rationale behind the preference for MXene as a SERS-active substrate, given its distinctive physicochemical properties. In this context, while MXene's abundant surface functional groups represent a significant advantage, its high electrical conductivity, suitable flexibility, extensive two-dimensional surface areas, and antibacterial activity also warrant consideration in terms of potential applications. It is emphasized that, for MXene nanolayers to demonstrate optimal performance in SERS applications, a plan should be devised to consider these features. By increasing readers' awareness of using MXene as a SERS active substrate, potential opportunities for future application areas may be created.
Collapse
Affiliation(s)
- Utku Bulut Simsek
- Department of Chemical Engineering, Bogazici University, TR-34342 Istanbul, Türkiye
| | - Menekse Sakir
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri 38039, Türkiye
| | - Suleyman Gokhan Colak
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, TR31200 Hatay, Türkiye
| | - Muslum Demir
- Department of Chemical Engineering, Bogazici University, TR-34342 Istanbul, Türkiye
- TUBITAK Marmara Research Center, Material Institute, Gebze 41470, Türkiye
| |
Collapse
|
6
|
Xing C, Luo M, Sheng Q, Zhu Z, Yu D, Huang J, He D, Zhang M, Fan W, Chen D. Silk Fabric Functionalized by Nanosilver Enabling the Wearable Sensing for Biomechanics and Biomolecules. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51669-51678. [PMID: 39268841 DOI: 10.1021/acsami.4c10253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Integrating biomechanical and biomolecular sensing mechanisms into wearable devices is a formidable challenge and key to acquiring personalized health management. To address this, we have developed an innovative multifunctional sensor enabled by plasma functionalized silk fabric, which possesses multimodal sensing capabilities for biomechanics and biomolecules. A seed-mediated in situ growth method was employed to coat silver nanoparticles (AgNPs) onto silk fibers, resulting in silk fibers functionalized with AgNPs (SFs@Ag) that exhibit both piezoresistive response and localized surface plasmon resonance effects. The SFs@Ag membrane enables accurate detection of mechanical pressure and specific biomolecules during wearable sensing, offering a versatile solution for comprehensive personalized health monitoring. Additionally, a machine learning algorithm has been established to specifically recognize muscle strain signals, potentially extending to the diagnosis and monitoring of neuromuscular disorders such as amyotrophic lateral sclerosis (ALS). Unlike electromyography, which detects large muscles in clinical medicine, sensing data for tiny muscles enhance our understanding of muscle coordination using the SFs@Ag sensor. This detection model provides feasibility for the early detection and prevention of neuromuscular diseases. Beyond muscle stress and strain sensing, biomolecular detection is a critical addition to achieving effective health management. In this study, we developed highly sensitive surface-enhanced Raman scattering (SERS) detection for wearable health monitoring. Finite-difference time-domain numerical simulations ware utilized to analyze the efficacy of the SFs@Ag sensor for wearable SERS sensing of biomolecules. Based on the specific SERS spectra, automatic extraction of signals of sweat molecules was also achieved. In summary, the SFs@Ag sensor bridges the gap between biomechanical and biomolecular sensing in wearable applications, providing significant value for personalized health management.
Collapse
Affiliation(s)
- Canglong Xing
- School of Materials Science and Engineering, Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Key Laboratory of Textile Composites, Xi'an Polytechnic University, Xi'an 710048, China
| | - Ming Luo
- CPL New Material Technology Company, Ltd., Jiashan, Zhejiang 314100, China
| | - Qiuhui Sheng
- CPL New Material Technology Company, Ltd., Jiashan, Zhejiang 314100, China
| | - Zhichao Zhu
- School of Materials Science and Engineering, Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Key Laboratory of Textile Composites, Xi'an Polytechnic University, Xi'an 710048, China
| | - Dan Yu
- School of Materials Science and Engineering, Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Key Laboratory of Textile Composites, Xi'an Polytechnic University, Xi'an 710048, China
| | - Jian Huang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| | - Dan He
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Zhang
- Department of Neurology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wei Fan
- School of Textile Science and Engineering, Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Dongzhen Chen
- School of Materials Science and Engineering, Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi'an Key Laboratory of Textile Composites, Xi'an Polytechnic University, Xi'an 710048, China
| |
Collapse
|
7
|
Qian S, Zhao W, Guo R, Wang X, Dai H, Lang J, Kadasala NR, Jiang Y, Liu Y. Apt-Conjugated PDMS-ZnO/Ag-Based Multifunctional Integrated Superhydrophobic Biosensor with High SERS Activity and Photocatalytic Sterilization Performance. Int J Mol Sci 2024; 25:7675. [PMID: 39062920 PMCID: PMC11276906 DOI: 10.3390/ijms25147675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Sensitive detection and efficient inactivation of pathogenic bacteria are crucial for halting the spread and reproduction of foodborne pathogenic bacteria. Herein, a novel Apt-modified PDMS-ZnO/Ag multifunctional biosensor has been developed for high-sensitivity surface-enhanced Raman scattering (SERS) detection along with photocatalytic sterilization towards Salmonella typhimurium (S. typhimurium). The distribution of the electric field in PDMS-ZnO/Ag with different Ag sputtering times was analyzed using a finite-difference time-domain (FDTD) algorithm. Due to the combined effect of electromagnetic enhancement and chemical enhancement, PDMS-ZnO/Ag exhibited outstanding SERS sensitivity. The limit of detection (LOD) for 4-MBA on the optimal SERS substrate (PZA-40) could be as little as 10-9 M. After PZA-40 was modified with the aptamer, the LOD of the PZA-40-Apt biosensor for detecting S. typhimurium was only 10 cfu/mL. Additionally, the PZA-40-Apt biosensor could effectively inactivate S. typhimurium under visible light irradiation within 10 min, with a bacterial lethality rate (Lb) of up to 97%. In particular, the PZA-40-Apt biosensor could identify S. typhimurium in food samples in addition to having minimal cytotoxicity and powerful biocompatibility. This work provides a multifunctional nanoplatform with broad prospects for selective SERS detection and photocatalytic sterilization of pathogenic bacteria.
Collapse
Affiliation(s)
- Sihan Qian
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Xiaohan Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Huasong Dai
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Jihui Lang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | | | - Yuhong Jiang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| |
Collapse
|
8
|
Wang J, Jiang H, Chen Y, Zhu X, Wu Q, Chen W, Zhao Q, Wang J, Qin P. CRISPR/Cas9-mediated SERS/colorimetric dual-mode lateral flow platform combined with smartphone for rapid and sensitive detection of Staphylococcus aureus. Biosens Bioelectron 2024; 249:116046. [PMID: 38241798 DOI: 10.1016/j.bios.2024.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Pathogenic bacteria infections pose a significant threat to global public health, making the development of rapid and reliable detection methods urgent. Here, we developed a surface-enhanced Raman scattering (SERS) and colorimetric dual-mode platform, termed smartphone-integrated CRISPR/Cas9-mediated lateral flow strip (SCC-LFS), and applied it to the ultrasensitive detection of Staphylococcus aureus (S. aureus). Strategically, functionalized silver-coated gold nanostar (AuNS@Ag) was prepared and used as the labeling material for LFS assay. In the presence of S. aureus, target gene-induced amplicons can be accurately recognized and unwound by the user-defined CRISPR/Cas9 system, forming intermediate bridges that bind many AuNS@Ag to the test line (T-line) of the strip. As a result, the T-line was colored and a recognizable SERS signal was obtained using a smartphone-integrated portable Raman spectrometer. This design not only maintains the simplicity of visual readout, but also integrates the quantitative capability of SERS, enabling the user to flexibly select the assay mode as needed. With this method, S. aureus down to 1 CFU/mL can be detected by both colorimetric and SERS modes, which is better than most existing methods. By incorporating a rapid extraction procedure, the entire assay can be completed in 45 min. The robustness and practicality of the method were further demonstrated by various real samples, indicating its considerable potential toward reliable screening of S. aureus.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China; School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Han Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Yuhong Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Xiaofan Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Qian Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, PR China
| | - Wei Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, PR China.
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Jie Wang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, PR China.
| | - Panzhu Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China.
| |
Collapse
|
9
|
Ruan S, Liu R, Chen X, Huang Q, Xiao C, You R, Huang L, Liu Y, Chen J, Xiao X, Lin Q, Lu Y. Determination of H 2O 2 and its antioxidant activity by BCM@Au NPs ratiometric SERS sensor. Talanta 2024; 268:125323. [PMID: 37890373 DOI: 10.1016/j.talanta.2023.125323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
As a reactive oxygen species (ROS), excessive production of H2O2 contributes to the development of several diseases such as, inflammation, cancer, and respiratory diseases. Supplementation with endogenous or exogenous antioxidants can scavenge ROS and reduce the oxidation of cellular molecules, thus alleviating the generation of diseases. Therefore, the determination of H2O2 content and its antioxidant activity is of great importance in disease diagnosis and treatment. In this paper, a ratiometric SERS sensor with a flexible cellulose membrane was designed for quantitative detection of H2O2 and assessment of antioxidant activity. First, gold seeds were reduced on bacterial cellulose membrane (BCM) and Au NPs were smoothly deposited on the bacterial cellulose membrane (BCM) using halides to reduce the reduction potential in the growth solution to form a flexible BCM@Au NPs SERS substrate. Afterwards, the oxidation of H2O2 was used to convert 3-mercaptophenylboronic acid (3-MPBA) to the corresponding phenol form 3-hydroxyphenylethanol (3-HTP). The change of substance resulted in a good linear relationship between the intensity ratio corresponding to the two Raman shifts of 881 cm-1 and 995 cm-1 and the H2O2 concentration with a detection limit of 0.0186 μM. This opens up a new method for the detection of H2O2 with high sensitivity and accuracy. In addition, this SERS platform was successfully used for the determination of antioxidant activity. It is promising to be applied to disease diagnosis and efficacy evaluation.
Collapse
Affiliation(s)
- Shuyan Ruan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ru Liu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Xi Chen
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Qian Huang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Chongxin Xiao
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Luqiang Huang
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China.
| | - Yunzhen Liu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Jingbo Chen
- Department of Oncology, Shengli Clinical Medical College Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Xiufeng Xiao
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Qingqiang Lin
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China.
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| |
Collapse
|
10
|
Xie M, Zhu Y, Li Z, Yan Y, Liu Y, Wu W, Zhang T, Li Z, Wang H. Key steps for improving bacterial SERS signals in complex samples: Separation, recognition, detection, and analysis. Talanta 2024; 268:125281. [PMID: 37832450 DOI: 10.1016/j.talanta.2023.125281] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Rapid and reliable detection of pathogenic bacteria is absolutely essential for research in environmental science, food quality, and medical diagnostics. Surface-enhanced Raman spectroscopy (SERS), as an emerging spectroscopic technique, has the advantages of high sensitivity, good selectivity, rapid detection speed, and portable operation, which has been broadly used in the detection of pathogenic bacteria in different kinds of complex samples. However, the SERS detection method is also challenging in dealing with the detection difficulties of bacterial samples in complex matrices, such as interference from complex matrices, confusion of similar bacteria, and complexity of data processing. Therefore, researchers have developed some technologies to assist in SERS detection of bacteria, including both the front-end process of obtaining bacterial sample data and the back-end data processing process. The review summarizes the key steps for improving bacterial SERS signals in complex samples: separation, recognition, detection, and analysis, highlighting the principles of each step and the key roles for SERS pathogenic bacteria analysis, and the interconnectivity between each step. In addition, the current challenges in the practical application of SERS technology and the development trends are discussed. The purpose of this review is to deepen researchers' understanding of the various stages of using SERS technology to detect bacteria in complex sample matrices, and help them find new breakthroughs in different stages to facilitate the detection and control of bacteria in complex samples.
Collapse
Affiliation(s)
- Maomei Xie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yiting Zhu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Zhiyao Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yueling Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yidan Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Wenbo Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Tong Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of TCM, Tianjin, 301617, China.
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of TCM, Tianjin, 301617, China.
| |
Collapse
|
11
|
Zhou Q, Natarajan B, Kannan P. Nanostructured biosensing platforms for the detection of food- and water-borne pathogenic Escherichia coli. Anal Bioanal Chem 2023:10.1007/s00216-023-04731-6. [PMID: 37169938 DOI: 10.1007/s00216-023-04731-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Pathogenic bacterial infection is one of the principal causes affecting human health and ecosystems. The accurate identification of bacteria in food and water samples is of significant interests to maintain safety and health for humans. Culture-based tests are practically tedious and may produce false-positive results, while viable but non-culturable microorganisms (NCMs) cannot be retrieved. Thus, it requires fast, reliable, and low-cost detection strategies for on-field analysis and point-of-care (POC) monitoring. The standard detection methods such as nucleic acid analysis (RT-PCR) and enzyme-linked immunosorbent assays (ELISA) are still challenging in POC practice due to their time-consuming (several hours to days) and expensive laboratory operations. The optical (surface plasmon resonance (SPR), fluorescence, and surface-enhanced Raman scattering (SERS)) and electrochemical-based detection of microbes (early stage of infective diseases) have been considered as alternative routes in the emerging world of nanostructured biosensing since they can attain a faster and concurrent screening of several pathogens in real samples. Moreover, optical and electrochemical detection strategies are opening a new route for the ability of detecting pathogens through the integration of cellphones, which is well fitted for POC analysis. This review article covers the current state of sensitive mechanistic approaches for the screening and detection of Escherichia coli O157:H7 (E. coli) pathogens in food and water samples, which can be potentially applied in clinical and environmental monitoring.
Collapse
Affiliation(s)
- Qiang Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang Province, 314001, People's Republic of China
| | - Bharathi Natarajan
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, 314001, People's Republic of China.
| | - Palanisamy Kannan
- Department of Endocrinology, First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), 1882 Zhonghuan South Road, Jiaxing, Zhejiang Province, 314001, People's Republic of China.
| |
Collapse
|
12
|
Xu T, Wang R, Gu C, Jiang T. Recyclable detection of gefitinib in clinical sample mediated by multifunctional Ag-anchored g-C 3N 4/MoS 2 composite substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122801. [PMID: 37187146 DOI: 10.1016/j.saa.2023.122801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/08/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) technology enables to satisfy the increasing demand of clinical drug monitoring due to the superiority of fingerprint recognition, real-time response, and nondestructive collection. Here, a novel graphitic carbon nitride (g-C3N4)/ molybdenum disulfide (MoS2)/Ag composite substrate with a 3D surface structure was successfully developed for the recyclable detection of gefitinib in serum. Attributed to the uniform and dense "hotspots" on the shrubby active surfaces in conjunction with the potential synergistic chemical enhancement of g-C3N4/MoS2 heterosystem, a remarkable SERS sensitivity with an attractive enhancement factor value of 3.3 × 107 was demonstrated. Meanwhile, a type-II heterojunction between g-C3N4 and MoS2 enabled more efficient diffusion of photogenerated e--h+ pairs assisted by the localized surface plasmon resonance of Ag NPs, which contributed to the reliable recyclable detection of gefitinib. The ultra-low limit of detection at 10-5 mg/mL and high recycling rates of gefitinib beyond 90% in serum were successfully realized. The results demonstrated the as-prepared SERS substrate has tremendous potential to be untilized for in-situ drug diagnostics.
Collapse
Affiliation(s)
- Tao Xu
- Department of Pharmacy, Ningbo City First Hospital, Ningbo 315010, Zhejiang, PR China
| | - Rongyan Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Chenjie Gu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Tao Jiang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|
13
|
Li Z, Hu J, Zhan Y, Shao Z, Gao M, Yao Q, Li Z, Sun S, Wang L. Coupling Bifunctional Nanozyme-Mediated Catalytic Signal Amplification and Label-Free SERS with Immunoassays for Ultrasensitive Detection of Pathogens in Milk Samples. Anal Chem 2023; 95:6417-6424. [PMID: 37031399 DOI: 10.1021/acs.analchem.3c00251] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Rapid and sensitive detection of foodborne bacteria is of great significance in guaranteeing food safety and preventing foodborne diseases. A bifunctional Au@Pt core-shell nanozyme with excellent catalytic properties and high surface-enhanced Raman scattering (SERS) activity was developed for the highly sensitive detection of Salmonella typhimurium based on a label-free SERS strategy. The ultrathin Pt shell (about 1 nm) can catalyze Raman-inactive molecules into Raman-active reporters, greatly amplifying the amount of signal molecules. Moreover, the Au core serves as an active SERS substrate to enhance the signal of reporter molecules, further significantly improving the detection sensitivity. Benefiting from the excellent properties, such a bifunctional Au@Pt nanozyme was integrated with a magnetic immunoassay to construct a label-free SERS platform for the highly sensitive detection of S. typhi with a low detection limit of 10 CFU mL-1. Also, the Au@Pt-based SERS platform exhibited excellent selectivity and was successfully utilized for the detection of S. typhi in milk samples by a portable Raman spectrometer. Our demonstration of the bifunctional nanozyme-based SERS strategy provides an efficient pathway to improve the sensitivity of label-free SERS detection of pathogens and holds great promise in food safety, environmental analysis, and other biosensing fields.
Collapse
Affiliation(s)
- Zhihao Li
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Jiao Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yifang Zhan
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Zhiyong Shao
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Mengyue Gao
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Qi Yao
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Zheng Li
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Shaowen Sun
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Lihua Wang
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| |
Collapse
|
14
|
Liu L, Ma W, Wang X, Li S. Recent Progress of Surface-Enhanced Raman Spectroscopy for Bacteria Detection. BIOSENSORS 2023; 13:350. [PMID: 36979564 PMCID: PMC10046079 DOI: 10.3390/bios13030350] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
There are various pathogenic bacteria in the surrounding living environment, which not only pose a great threat to human health but also bring huge losses to economic development. Conventional methods for bacteria detection are usually time-consuming, complicated and labor-intensive, and cannot meet the growing demands for on-site and rapid analyses. Sensitive, rapid and effective methods for pathogenic bacteria detection are necessary for environmental monitoring, food safety and infectious bacteria diagnosis. Recently, benefiting from its advantages of rapidity and high sensitivity, surface-enhanced Raman spectroscopy (SERS) has attracted significant attention in the field of bacteria detection and identification as well as drug susceptibility testing. Here, we comprehensively reviewed the latest advances in SERS technology in the field of bacteria analysis. Firstly, the mechanism of SERS detection and the fabrication of the SERS substrate were briefly introduced. Secondly, the label-free SERS applied for the identification of bacteria species was summarized in detail. Thirdly, various SERS tags for the high-sensitivity detection of bacteria were also discussed. Moreover, we emphasized the application prospects of microfluidic SERS chips in antimicrobial susceptibility testing (AST). In the end, we gave an outlook on the future development and trends of SERS in point-of-care diagnoses of bacterial infections.
Collapse
Affiliation(s)
- Lulu Liu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenrui Ma
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiang Wang
- Department of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
15
|
Chen D, Gao J, He D, He J, Li Y, Zhang M, Li W, Chen X, He X, Fu T. Plasmonic Bridge Sensor Enabled by Carbon Nanotubes and Au-Ag Nano-Rambutan for Multifunctional Detection of Biomechanics and Bio/Chemical Molecules. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8783-8793. [PMID: 36723501 DOI: 10.1021/acsami.2c22634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wearable, noninvasive, and simultaneous sensing of subtle strains and eccrine molecules on human body is essential for future health monitoring and personalized medicine. However, there is a huge chasm between biomechanics and bio/chemical molecule detections. Here, a wearable plasmonic bridge sensor with multiple abilities to monitor subtle strains and molecules is developed. Hollow Au-Ag nano-rambutans and carbon nanotubes (CNTs) are adsorbed in the nonwoven fabrics (NWFs) conjointly, where the gap between the conducting network of CNTs is bridged by the Au-Ag nano-rambutans during the subtle strain sensing, and the detection sensitivity for stress is improved at least 1 order of magnitude compared to that with the only CNTs. In order to acquire the accurate human action recognition, a machine learning algorithm (support vector machines) based on output biomechanics data is designed. The average accuracy of our plasmonic bridge sensor reaches 89.0% for human action recognition. Moreover, due to the hollow structure and high nanoroughness, the single Au-Ag nano-rambutan particle has strong localized surface plasmon resonance effect and high surface-enhanced Raman scattering (SERS) activity. Based on their unique SERS spectra introduced by the hollow Au-Ag nano-rambutan adsorbed in the NWFs, noninvasive extraction and "fingerprint" recognition of bio/chemical molecules could be realized during the wearable sensing. In sum, the NWFs/CNTs/Au-Ag sensor bridges the barrier between the bodily strain detection and molecule recognition during the wearable sensing. Such integrated and multifunctional sensing strategy for universal biomechanics and bio/chemical molecules means to assess human health to be of importance.
Collapse
Affiliation(s)
- Dongzhen Chen
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an710048, China
| | - Jianzhao Gao
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an710048, China
| | - Dan He
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an710049, China
| | - Jingshun He
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an710048, China
| | - Yang Li
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an710048, China
| | - Meng Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an710061, China
| | - Wenya Li
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an710048, China
| | - Xin Chen
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an710048, China
| | - Xinhai He
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an710048, China
| | - Tao Fu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
16
|
Gong T, Das CM, Yin MJ, Lv TR, Singh NM, Soehartono AM, Singh G, An QF, Yong KT. Development of SERS tags for human diseases screening and detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Zhao ZJ, Ahn J, Lee D, Jeong CB, Kang M, Choi J, Bok M, Hwang S, Jeon S, Park S, Ko J, Chang KS, Choi JW, Park I, Jeong JH. Wafer-scale, highly uniform, and well-arrayed suspended nanostructures for enhancing the performance of electronic devices. NANOSCALE 2022; 14:1136-1143. [PMID: 34989389 DOI: 10.1039/d1nr07375c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Suspended nanostructures play an important role in enhancing the performance of a diverse group of nanodevices. However, realizing a good arrangement and suspension for nanostructures of various shapes remains a significant challenge. Herein, a rapid and simple method for fabricating wafer-scale, highly uniform, well-arrayed suspended nanostructures via nanowelding lithography is reported. Suspended nanostructures with various shapes (nanowires, nanoholes, nanomesh, and nanofilms) and materials (gold, silver, and palladium metals) were employed to demonstrate the applicability of our method. Moreover, gas sensors and thermoacoustic speakers with suspended nanowires outperformed those with unsuspended nanostructures. The proposed method is expected to help advance the development of future nanodevices based on suspended nanostructures.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, No. 999 Pidu District, Chengdu, Sichuan, China
| | - Junseong Ahn
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea.
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Dongheon Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chan Bae Jeong
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Daejion 34133, Republic of Korea
| | - Mingu Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Jungrak Choi
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Moonjeong Bok
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea.
| | - Soonhyoung Hwang
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea.
| | - Sohee Jeon
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea.
| | - Sooyeon Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jiwoo Ko
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea.
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Ki Soo Chang
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Daejion 34133, Republic of Korea
| | - Jung-Woo Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Jun-Ho Jeong
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea.
| |
Collapse
|
18
|
Liu Y, He L, Zhao Y, Cao Y, Yu Z, Lu F. Optimization of Surface-Enhanced Raman Spectroscopy Detection Conditions for Interaction between Gonyautoxin and Its Aptamer. Toxins (Basel) 2022; 14:toxins14010049. [PMID: 35051026 PMCID: PMC8779825 DOI: 10.3390/toxins14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
This study aimed to optimize the detection conditions for surface-enhanced Raman spectroscopy (SERS) of single-stranded DNA (ssDNA) in four different buffers and explore the interaction between gonyautoxin (GTX1/4) and its aptamer, GO18. The influence of the silver colloid solution and MgSO4 concentration (0.01 M) added under four different buffered conditions on DNA SERS detection was studied to determine the optimum detection conditions. We explored the interaction between GTX1/4 and GO18 under the same conditions as those in the systematic evolution of ligands by exponential enrichment technique, using Tris-HCl as the buffer. The characteristic peaks of GO18 and its G-quadruplex were detected in four different buffer solutions. The change in peak intensity at 1656 cm−1 confirmed that the binding site between GTX1/4 and GO18 was in the G-quadruplex plane. The relative intensity of the peak at 1656 cm−1 was selected for the GTX1/4–GO18 complex (I1656/I1099) to plot the ratio of GTX1/4 in the Tris-HCl buffer condition (including 30 μL of silver colloid solution and 2 μL of MgSO4), and a linear relationship was obtained as follows: Y = 0.1867X + 1.2205 (R2 = 0.9239). This study provides a basis for subsequent application of SERS in the detection of ssDNA, as well as the binding of small toxins and aptamers.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmaceutical Analysis, College of Pharmacy, Naval Medical University, Shanghai 200433, China;
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Naval Medical University, Shanghai 200433, China
| | - Lijuan He
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.H.); (Y.Z.)
| | - Yunli Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.H.); (Y.Z.)
| | - Yongbing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Correspondence: (Y.C.); (Z.Y.); (F.L.)
| | - Zhiguo Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.H.); (Y.Z.)
- Correspondence: (Y.C.); (Z.Y.); (F.L.)
| | - Feng Lu
- Department of Pharmaceutical Analysis, College of Pharmacy, Naval Medical University, Shanghai 200433, China;
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Naval Medical University, Shanghai 200433, China
- Correspondence: (Y.C.); (Z.Y.); (F.L.)
| |
Collapse
|
19
|
Chen D, Li Y, Wang L, Wang Y, Ning P, Shum P, He X, Fu T. A bio-sensing surface with high biocompatibility for enhancing Raman scattering signals as enabled by a Mo–Ag film. Analyst 2022; 147:1385-1393. [DOI: 10.1039/d2an00008c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sensitive SERS sensing of molecules and bacteria was acquired through a Mo–Ag film with high cytocompatibility and hydrophilicity.
Collapse
Affiliation(s)
- Dongzhen Chen
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Yang Li
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Lijun Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yingjie Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pan Ning
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Powan Shum
- Asahi Group Co. Ltd, Kwun Tong, Hong Kong, China
| | - Xinhai He
- Xi'an Key Laboratory of Textile Composites, Key Laboratory of Functional Textile Sensing Fiber and Irregular Shape Weaving Technology, School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Tao Fu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
20
|
Yang M, Chen X, Wang Z, Zhu Y, Pan S, Chen K, Wang Y, Zheng J. Zero→Two-Dimensional Metal Nanostructures: An Overview on Methods of Preparation, Characterization, Properties, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1895. [PMID: 34443724 PMCID: PMC8398172 DOI: 10.3390/nano11081895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022]
Abstract
Metal nanostructured materials, with many excellent and unique physical and mechanical properties compared to macroscopic bulk materials, have been widely used in the fields of electronics, bioimaging, sensing, photonics, biomimetic biology, information, and energy storage. It is worthy of noting that most of these applications require the use of nanostructured metals with specific controlled properties, which are significantly dependent on a series of physical parameters of its characteristic size, geometry, composition, and structure. Therefore, research on low-cost preparation of metal nanostructures and controlling of their characteristic sizes and geometric shapes are the keys to their development in different application fields. The preparation methods, physical and chemical properties, and application progress of metallic nanostructures are reviewed, and the methods for characterizing metal nanostructures are summarized. Finally, the future development of metallic nanostructure materials is explored.
Collapse
Affiliation(s)
- Ming Yang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
| | - Xiaohua Chen
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;
| | - Zidong Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;
| | - Yuzhi Zhu
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
| | - Shiwei Pan
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;
| | - Kaixuan Chen
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
| | - Yanlin Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
| | - Jiaqi Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (M.Y.); (Y.Z.); (K.C.); (Y.W.); (J.Z.)
| |
Collapse
|
21
|
Zhang S, Tang X, Zheng H, Wang D, Xie Z, Ding W, Zheng X. Combination of bacitracin-based flocculant and surface enhanced Raman scattering labels for flocculation, identification and sterilization of multiple bacteria in water treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124389. [PMID: 33183843 DOI: 10.1016/j.jhazmat.2020.124389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/10/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Bacteria, especially antibiotic-resistant bacteria, in water threaten public health in countries. Simultaneous flocculation, sterilization and identification of bacteria are great challenge in water treatment. Herein we presented a three-in-one compound through combining a novel Bacitracin-based flocculant (B-g-PAMDAC) and surface enhanced Raman scattering (SERS) labels, the modified Au@AgNPs using graphene oxide (GO) and 4-mercaptophenylboronic acid (4-MPBA). B-g-PAMDAC with bactericidal groups and microblock structure was synthesized via copolymerization and self-assembly. Its functional groups and microblock structure contributed to the excellent performance in flocculation of bacteria. 4-MPBA as bacterial capture bound to the bacterial cell membrane and contributed to recognition of bacteria in flocculation. Bacteria aggregating around Au@AgNPs resulted in abundant "hot spots" and strong Raman signals. SERS labels obviously improved the sensitivity, accuracy and stability of bacteria identification even at low bacterial concentration of 1 × 103 CFU mL-1. They presented distinct fingerprints of bacteria, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus and Enterococcus faecalis, in Raman mappings. Bacitracin improved sterilization efficiency of B-g-PAMDAC in four bacteria treatment in terms of sterilization rate and time. β-galactosidase and respiratory activity of bacteria revealed sterilization mechanism of B-g-PAMDAC that changed permeability of cell membrane before it reduced the respiration activity of bacteria and ruptured cell wall.
Collapse
Affiliation(s)
- Shixin Zhang
- Key laboratory of the three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Xiaomin Tang
- Key laboratory of the three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China; Chongqing Key Laboratory of Catalysis & New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, PR China.
| | - Huaili Zheng
- Key laboratory of the three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Zongli Xie
- CSIRO Manufacturing, Private bag 10, Clayton South VIC 3169, Australia
| | - Wei Ding
- Key laboratory of the three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Xinyu Zheng
- Key laboratory of the three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
22
|
Zhou X, Hu Z, Yang D, Xie S, Jiang Z, Niessner R, Haisch C, Zhou H, Sun P. Bacteria Detection: From Powerful SERS to Its Advanced Compatible Techniques. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001739. [PMID: 33304748 PMCID: PMC7710000 DOI: 10.1002/advs.202001739] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/24/2020] [Indexed: 05/13/2023]
Abstract
The rapid, highly sensitive, and accurate detection of bacteria is the focus of various fields, especially food safety and public health. Surface-enhanced Raman spectroscopy (SERS), with the advantages of being fast, sensitive, and nondestructive, can be used to directly obtain molecular fingerprint information, as well as for the on-line qualitative analysis of multicomponent samples. It has therefore become an effective technique for bacterial detection. Within this progress report, advances in the detection of bacteria using SERS and other compatible techniques are discussed in order to summarize its development in recent years. First, the enhancement principle and mechanism of SERS technology are briefly overviewed. The second part is devoted to a label-free strategy for the detection of bacterial cells and bacterial metabolites. In this section, important considerations that must be made to improve bacterial SERS signals are discussed. Then, the label-based SERS strategy involves the design strategy of SERS tags, the immunomagnetic separation of SERS tags, and the capture of bacteria from solution and dye-labeled SERS primers. In the third part, several novel SERS compatible technologies and applications in clinical and food safety are introduced. In the final part, the results achieved are summarized and future perspectives are proposed.
Collapse
Affiliation(s)
- Xia Zhou
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
- Department of Oncologythe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong510632China
| | - Ziwei Hu
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Danting Yang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological TechnologyMedical School of Ningbo UniversityNingboZhejiang315211China
| | - Shouxia Xie
- The Second Clinical Medical College (Shenzhen People's Hospital)Jinan UniversityShenzhenGuangdong518020China
| | - Zhengjin Jiang
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Reinhard Niessner
- Institute of Hydrochemistry and Chair for Analytical ChemistryTechnical University of MunichMarchioninistr. 17MunichD‐81377Germany
| | - Christoph Haisch
- Institute of Hydrochemistry and Chair for Analytical ChemistryTechnical University of MunichMarchioninistr. 17MunichD‐81377Germany
| | - Haibo Zhou
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
- Department of Oncologythe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong510632China
- The Second Clinical Medical College (Shenzhen People's Hospital)Jinan UniversityShenzhenGuangdong518020China
| | - Pinghua Sun
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
- Department of Oncologythe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdong510632China
| |
Collapse
|
23
|
Lin T, Song YL, Liao J, Liu F, Zeng TT. Applications of surface-enhanced Raman spectroscopy in detection fields. Nanomedicine (Lond) 2020; 15:2971-2989. [PMID: 33140686 DOI: 10.2217/nnm-2020-0361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a Raman spectroscopy technique that has been widely used in food safety, environmental monitoring, medical diagnosis and treatment and drug monitoring because of its high selectivity, sensitivity, rapidness, simplicity and specificity in identifying molecular structures. This review introduces the detection mechanism of SERS and summarizes the most recent progress concerning the use of SERS for the detection and characterization of molecules, providing references for the later research of SERS in detection fields.
Collapse
Affiliation(s)
- Ting Lin
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ya-Li Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Juan Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Fang Liu
- Department of Laboratory Pathology, Xijing Hospital, Fourth Military Medical University, Xian, 710054, PR China
| | - Ting-Ting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
24
|
Bai X, Shen A, Hu J. A sensitive SERS-based sandwich immunoassay platform for simultaneous multiple detection of foodborne pathogens without interference. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4885-4891. [PMID: 32966366 DOI: 10.1039/d0ay01541e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A reliable and sensitive sensing of multiple foodborne pathogens is critical for timely diagnosis and human health. To meet this need, herein, we designed a sandwich immunoassay platform, using functionalized SERS probes and magnetic beads, for the interference-free simultaneous detection of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in food samples by surface-enhanced Raman scattering (SERS) technology. The signal of two SERS probes coded by triple bonds (C[triple bond, length as m-dash]C and C[triple bond, length as m-dash]N) located at 2105 and 2227 cm-1, respectively, could perfectly avoid the spectral overlap with coexisting materials in the Raman fingerprint region, which ensured the accuracy of the immunoassay platform. The application of functional magnetic beads, integrating enrichment and separation, greatly improved the sensitivity of the detection system. Under magnetic force, due to the mature interaction between the antigen and antibody, the sandwich immunoassay platform could be fabricated. Its limit of detection (LOD) for the simultaneous detection of E. coli and S. aureus was as low as 10 and 25 cfu mL-1, respectively, and the sandwich immunoassay platform was successfully applied for the detection of E. coli and S. aureus in bottled water and milk. As a sensitive and highly selective analytical technique for the simultaneous multiple detection of pathogens, this SERS-based method has great potential to be applied in the field of food safety.
Collapse
Affiliation(s)
- Xiangru Bai
- Institute of Environment and Safety, Wuhan Academy of Agricultural Science, Wuhan 430207, P. R. China.
| | | | | |
Collapse
|
25
|
Liu X, Ma J, Jiang P, Shen J, Wang R, Wang Y, Tu G. Large-Scale Flexible Surface-Enhanced Raman Scattering (SERS) Sensors with High Stability and Signal Homogeneity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45332-45341. [PMID: 32914628 DOI: 10.1021/acsami.0c13691] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flexible surface-enhanced Raman scattering (SERS) sensors have attracted great attention as a portable and low-cost device for chemical and bio-detection. However, flexible SERS sensors tend to suffer low signal spatial homogeneity due to the uneven distribution of active plasmonic nanostructures (hot spots) and quick degradation of their sensitivity due to low adhesion of hot spots and flexible substrates during fast sampling. Herein, a large-area (20 × 20 cm2) polyimide (PI)-based SERS sensor is exploited for trace detection with high signal homogeneity and stability. The SERS sensor is constructed from PI through in situ growth of silver and gold core-shell nanoparticles (Ag@Au NPs) based on chemical reduction and galvanic replacement processes. Benefiting from the abundant carboxyl groups on the surface-cleaved PI, densely and uniformly distributed Ag@Au NPs are successfully prepared on the film under ambient conditions. The high Raman enhancement factor (EF) (up to 1.07 × 107) and detection capability with low nanomolar (10-9 M) detection limits are obtained for this flexible SERS sensor. The uniform Raman signals in the random region show good signal homogeneity with a low variation of 8.7%. Moreover, the flexible SERS sensor exhibited superior efficiency and durability after storage for 30 days even after 500 cycles of mechanical stimuli (bending or torsion). The residue of pesticide thiram (tetramethylthiuram disulfide, TMTD) has been rapidly traced by direct sampling from the apple surface, and a sensitivity of 10 ng/cm2 for TMTD was achieved. These findings show that the PI-based SERS sensor is a very strong candidate for broad and simple utilization of flexible SERS for both laboratory and commercial applications in chemical and biomolecule detections.
Collapse
Affiliation(s)
- Xiangfu Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jinming Ma
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Pengfei Jiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jiulin Shen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Rongwen Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yao Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Guoli Tu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|