1
|
Han Y, Li J, Chen T, Gao B, Wang H. Modern microelectronics and microfluidics on microneedles. Analyst 2023; 148:4591-4615. [PMID: 37664954 DOI: 10.1039/d3an01045g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Possessing the attractive advantages of moderate invasiveness and high compliance, there is no doubt that microneedles (MNs) have been a gradually rising star in the field of medicine. Recent evidence implies that microelectronics technology based on microcircuits, microelectrodes and other microelectronic elements combined with MNs can realize mild electrical stimulation, drug release and various types of electrical sensing detection. In addition, the combination of microfluidics technology and MNs makes it possible to transport fluid drugs and access a small quantity of body fluids which have shown significant untapped potential for a wide range of diagnostics. Of particular note is that combining both technologies and MNs is more difficult, but is promising to build a modern healthcare platform with more comprehensive functions. This review introduces the properties of MNs that can form integrated systems with microelectronics and microfluidics, and summarizes these systems and their applications. Furthermore, the future challenges and perspectives of the integrated systems are conclusively proposed.
Collapse
Affiliation(s)
- Yanzhang Han
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Jun Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Tingting Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Huili Wang
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Chen L, Guo X, Sun X, Zhang S, Wu J, Yu H, Zhang T, Cheng W, Shi Y, Pan L. Porous Structural Microfluidic Device for Biomedical Diagnosis: A Review. MICROMACHINES 2023; 14:547. [PMID: 36984956 PMCID: PMC10051279 DOI: 10.3390/mi14030547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Microfluidics has recently received more and more attention in applications such as biomedical, chemical and medicine. With the development of microelectronics technology as well as material science in recent years, microfluidic devices have made great progress. Porous structures as a discontinuous medium in which the special flow phenomena of fluids lead to their potential and special applications in microfluidics offer a unique way to develop completely new microfluidic chips. In this article, we firstly introduce the fabrication methods for porous structures of different materials. Then, the physical effects of microfluid flow in porous media and their related physical models are discussed. Finally, the state-of-the-art porous microfluidic chips and their applications in biomedicine are summarized, and we present the current problems and future directions in this field.
Collapse
Affiliation(s)
| | | | - Xidi Sun
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | | | | | | | | | | | - Yi Shi
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | - Lijia Pan
- Correspondence: (X.S.); (Y.S.); (L.P.)
| |
Collapse
|
3
|
Chun J, Xu C, Li Q, Chen Y, Zhao Q, Yang W, Wen R, Ma X. Microscopic Observation of Preferential Capillary Pumping in Hollow Nanowire Bundles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:352-362. [PMID: 34812042 DOI: 10.1021/acs.langmuir.1c02647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Numerous studies have focused on designing micro/nanostructured surfaces to improve wicking capability for rapid liquid transport in many industrial applications. Although hierarchical surfaces have been demonstrated to enhance wicking capability, the underlying mechanism of liquid transport remains elusive. Here, we report the preferential capillary pumping on hollow hierarchical surfaces with internal nanostructures, which are different from the conventional solid hierarchical surfaces with external nanostructures. Specifically, capillary pumping preferentially occurs in the nanowire bundles instead of the interconnected V-groove on hollow hierarchical surfaces, observed by confocal laser scanning fluorescence microscopy. Theoretical analysis shows that capillary pumping capability is mainly dependent on the nanowire diameter and results in 15.5 times higher capillary climbing velocity in the nanowire bundles than that in the microscale V-groove. Driven by the Laplace pressure difference between nanowire bundles and V-grooves, the preferential capillary pumping is increased with the reduction of the nanowire diameter. Capillary pumping of the nanowire bundles provides a preferential path for rapid liquid flow, leading to 2 times higher wicking capability of the hollow hierarchical surface comparing with the conventional hierarchical surface. The unique mechanism of preferential capillary pumping revealed in this work paves the way for wicking enhancement and provides an insight into the design of wicking surfaces for high-performance capillary evaporation in a broad range of applications.
Collapse
Affiliation(s)
- Jiang Chun
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chen Xu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qifan Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yansong Chen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qishan Zhao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei Yang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Rongfu Wen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
4
|
Fischer R, Schlepütz CM, Hegemann D, Rossi RM, Derome D, Carmeliet J. Four-dimensional imaging and free-energy analysis of sudden pore-filling events in wicking of yarns. Phys Rev E 2021; 103:053101. [PMID: 34134200 DOI: 10.1103/physreve.103.053101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/13/2021] [Indexed: 11/07/2022]
Abstract
What are the mechanisms at play in the spontaneous imbibition dynamics in polyethylene terephthalate filament yarns at pore scale? Processes at pore scale such as waiting times between the filling of two neighboring pores, as observed in special irregular porous media, like yarns, may overrule the predicted behavior by well-known laws such as Washburn's law. While the imbibition physics are well known, classic models like Washburn's law cannot explain the dynamics observed for yarns. The stepwise dynamics is discussed in terms of the interplay of thermodynamic free energy and viscous dissipation. Time-resolved synchrotron x-ray microtomography documents water filling at pore scale. Spontaneous imbibition in yarns is characterized by a series of fast pore-filling events separated by long periods of low flux. Four-dimensional imaging allows the extraction of interface areas at the boundaries between water, air, and polymer and the calculation of free-energy evolution. It is found that the waiting periods correspond to quasistable water configurations of almost vanishing free-energy gradient. The distributions of pore filling event sizes and waiting times spread over several orders of magnitude, resulting in the pronounced stepwise uptake dynamics.
Collapse
Affiliation(s)
- Robert Fischer
- Laboratory of Multiscale Studies in Building Physics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.,Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.,Chair of Building Physics, Swiss Federal Institute of Technology Zurich (ETHZ), Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland
| | | | - Dirk Hegemann
- Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - René M Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Dominique Derome
- Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - Jan Carmeliet
- Chair of Building Physics, Swiss Federal Institute of Technology Zurich (ETHZ), Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland
| |
Collapse
|