1
|
Lin X, Gowen AA, Chen S, Xu JL. Baking releases microplastics from polyethylene terephthalate bakeware as detected by optical photothermal infrared and quantum cascade laser infrared. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171408. [PMID: 38432360 DOI: 10.1016/j.scitotenv.2024.171408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/09/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
The use of plastic bakeware is a potential source of human exposure to microplastics (MPs). However, characterizing MPs remains a challenge. This study aims to employ optical photothermal infrared (O-PTIR) and quantum cascade laser infrared (QCL-IR) technology to characterise polyethylene terephthalate (PET) MPs shed from PET bakeware during the baking process. The bakeware, filled with ultrapure water, underwent baking cycles at 220 °C for 20 min, 60 min, and three consecutive cycles of 60 min each. Subsequently, particles present in the ultrapure water were collected using an Al2O3 filter. O-PTIR and QCL-IR were used to characterise PET MPs collected from the filtration. Analysis revealed that QCL-IR spectra exhibited broader absorption peaks, compared to O-PTIR. Notably, MP spectra obtained from both techniques displayed common absorption peaks around 1119, 1623, 1341 and 1725 cm-1. The dominant size of PET MPs detected by O-PTIR and QCL-IR was 1-3 μm and 5-20 μm, respectively. The quantity of identified PET MPs using O-PTIR was 18 times greater than that with QCL-IR, which was attributed to variations in spatial resolution, sampling methods for spectra collection, and data analysis employed by the two methods. Importantly, findings from both techniques highlighted a notably large quantity of MPs released from PET bakeware, particularly evident after 3 cycles of 60 min of baking, suggesting a substantial increase in the potential ingestion of MPs, especially in scenarios involving extended baking durations. The research outcomes will guide consumers on minimizing the intake of microplastics by using PET bakeware for shorter baking time. Additionally, the study will yield valuable insights into the application of O-PTIR and QCL-IR for MPs detection, potentially inspiring advancements in MPs detection methodologies through cutting-edge technologies.
Collapse
Affiliation(s)
- Xiaohui Lin
- School of Biosystems and Food Engineering, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| | - Aoife A Gowen
- School of Biosystems and Food Engineering, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Shuai Chen
- Shanghai Polytechnic University 201209, China
| | - Jun-Li Xu
- School of Biosystems and Food Engineering, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Characterisation and Classification of Foodborne Bacteria Using Reflectance FTIR Microscopic Imaging. Molecules 2021; 26:molecules26206318. [PMID: 34684898 PMCID: PMC8541507 DOI: 10.3390/molecules26206318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
This work investigates the application of reflectance Fourier transform infrared (FTIR) microscopic imaging for rapid, and non-invasive detection and classification between Bacillus subtilis and Escherichia coli cell suspensions dried onto metallic substrates (stainless steel (STS) and aluminium (Al) slides) in the optical density (OD) concentration range of 0.001 to 10. Results showed that reflectance FTIR of samples with OD lower than 0.1 did not present an acceptable spectral signal to enable classification. Two modelling strategies were devised to evaluate model performance, transferability and consistency among concentration levels. Modelling strategy 1 involves training the model with half of the sample set, consisting of all concentrations, and applying it to the remaining half. Using this approach, for the STS substrate, the best model was achieved using support vector machine (SVM) classification, providing an accuracy of 96% and Matthews correlation coefficient (MCC) of 0.93 for the independent test set. For the Al substrate, the best SVM model produced an accuracy and MCC of 91% and 0.82, respectively. Furthermore, the aforementioned best model built from one substrate was transferred to predict the bacterial samples deposited on the other substrate. Results revealed an acceptable predictive ability when transferring the STS model to samples on Al (accuracy = 82%). However, the Al model could not be adapted to bacterial samples deposited on STS (accuracy = 57%). For modelling strategy 2, models were developed using one concentration level and tested on the other concentrations for each substrate. Results proved that models built from samples with moderate (1 OD) concentration can be adapted to other concentrations with good model generalization. Prediction maps revealed the heterogeneous distribution of biomolecules due to the coffee ring effect. This work demonstrated the feasibility of applying FTIR to characterise spectroscopic fingerprints of dry bacterial cells on substrates of relevance for food processing.
Collapse
|
3
|
Haraźna K, Cichoń E, Skibiński S, Witko T, Solarz D, Kwiecień I, Marcello E, Zimowska M, Socha R, Szefer E, Zima A, Roy I, Raftopoulos KN, Pielichowski K, Witko M, Guzik M. Physicochemical and Biological Characterisation of Diclofenac Oligomeric Poly(3-hydroxyoctanoate) Hybrids as β-TCP Ceramics Modifiers for Bone Tissue Regeneration. Int J Mol Sci 2020; 21:E9452. [PMID: 33322564 PMCID: PMC7763618 DOI: 10.3390/ijms21249452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Nowadays, regenerative medicine faces a major challenge in providing new, functional materials that will meet the characteristics desired to replenish and grow new tissue. Therefore, this study presents new ceramic-polymer composites in which the matrix consists of tricalcium phosphates covered with blends containing a chemically bounded diclofenac with the biocompatible polymer-poly(3-hydroxyoctanoate), P(3HO). Modification of P(3HO) oligomers was confirmed by NMR, IR and XPS. Moreover, obtained oligomers and their blends were subjected to an in-depth characterisation using GPC, TGA, DSC and AFM. Furthermore, we demonstrate that the hydrophobicity and surface free energy values of blends decreased with the amount of diclofenac modified oligomers. Subsequently, the designed composites were used as a substrate for growth of the pre-osteoblast cell line (MC3T3-E1). An in vitro biocompatibility study showed that the composite with the lowest concentration of the proposed drug is within the range assumed to be non-toxic (viability above 70%). Cell proliferation was visualised using the SEM method, whereas the observation of cell penetration into the scaffold was carried out by confocal microscopy. Thus, it can be an ideal new functional bone tissue substitute, allowing not only the regeneration and restoration of the defect but also inhibiting the development of chronic inflammation.
Collapse
Affiliation(s)
- Katarzyna Haraźna
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (T.W.); (M.Z.); (R.S.); (M.W.)
| | - Ewelina Cichoń
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland; (E.C.); (S.S.); (A.Z.)
| | - Szymon Skibiński
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland; (E.C.); (S.S.); (A.Z.)
| | - Tomasz Witko
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (T.W.); (M.Z.); (R.S.); (M.W.)
| | - Daria Solarz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11, 30-348 Kraków, Poland;
| | - Iwona Kwiecień
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland;
| | - Elena Marcello
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, UK;
| | - Małgorzata Zimowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (T.W.); (M.Z.); (R.S.); (M.W.)
| | - Robert Socha
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (T.W.); (M.Z.); (R.S.); (M.W.)
| | - Ewa Szefer
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland; (E.S.); (K.N.R.); (K.P.)
| | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland; (E.C.); (S.S.); (A.Z.)
| | - Ipsita Roy
- Department of Materials Science and Engineering, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK;
| | - Konstantinos N. Raftopoulos
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland; (E.S.); (K.N.R.); (K.P.)
| | - Krzysztof Pielichowski
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland; (E.S.); (K.N.R.); (K.P.)
| | - Małgorzata Witko
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (T.W.); (M.Z.); (R.S.); (M.W.)
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (T.W.); (M.Z.); (R.S.); (M.W.)
| |
Collapse
|