1
|
Xu H, Li Y, Xie Z, Wang X, Yang R, Wu H, Mai Y. Highly efficient electrooxidation of biomass-based 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Cu-Ni bimetal-phytic acid hybrid electrocatalyst. Chem Commun (Camb) 2024; 61:330-333. [PMID: 39633603 DOI: 10.1039/d4cc05268d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
High-performance copper/nickel@phytic acid hybrids (Cu-Ni(x)@PA) using plant-originated phytic acid as a building block were constructed for the electrooxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. The optimized Cu-Ni(2)@PA shows excellent performance with high faradaic efficiency (96.7%) and selectivity (97.5%). The mechanism behind such high efficiency was revealed.
Collapse
Affiliation(s)
- Haishan Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yinghua Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhenbing Xie
- Department of Chemistry, Tangshan Normal University, Tangshan 063000, China.
| | - Xin Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Runlu Yang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Haoran Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Li H, Liu X, Feng X, Guo X, Xu Z, Wang Y. Rapid assessment of acetophenone using an anti-interfering triple-emission Ln 3+-functionalized HOF@MOF sensor. Talanta 2024; 280:126718. [PMID: 39154436 DOI: 10.1016/j.talanta.2024.126718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The development of high-performance sensors for rapidly detecting acetylacetone (AP) in water samples is necessary because its release into the environment can result in many vital problems for human health and environment. Herein, we first designed a hybrid by integrating HOF with ZIF-8 through a sequential growth strategy. By separately introducing blue-emitting SiQDs and green- and red-emitting Tb3+ and Eu3+ into ZIF-8 and HOF, the resultant ZIF-8@SiQDs@HOF@Eu3+@Tb3+ comprised three emission peaks at 484, 545 and 620 nm, all of which could be employed as switch-off responsive peaks to low concentrations of AP with a detection limit of 0.79 ppm. However, in environments with high concentrations of AP, a turn-on signal at 484 nm was observed. Thereupon, the ratiometric fluorescence intensity of the ternary emission varied within different concentration ranges, accompanied by the fluorescence color evolution from red to salmon to plum to purple to final blue. Moreover, a portable sensing film was fabricated for rapid warning, sensitive and visual determination of AP in complicated environments. Therefore, this triple-emission sensor with wide color variations and strong anti-interference advantages could promote further research to improve the selectivity, sensitivity and inherent self-correction of multimodal fluorescence detection and the ease of sensing operation.
Collapse
Affiliation(s)
- Huijun Li
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Xiang Liu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiaoqin Feng
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiaoyuan Guo
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Zhouqing Xu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Yan Wang
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China; Henan Provincial Research Center for Early Warning and Emergency Engineering of Combusstion and Explosion Power Disaster, Henan Polytechnic University, Jiaozuo, 454000, China.
| |
Collapse
|
3
|
Bisio C, Brendlé J, Cahen S, Feng Y, Hwang SJ, Melanova K, Nocchetti M, O'Hare D, Rabu P, Leroux F. Recent advances and perspectives on intercalation layered compounds part 1: design and applications in the field of energy. Dalton Trans 2024; 53:14525-14550. [PMID: 39057836 DOI: 10.1039/d4dt00755g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Herein, initially, we present a general overview of the global financial support for chemistry devoted to materials science, specifically intercalation layered compounds (ILCs). Subsequently, the strategies to synthesise these host structures and the corresponding guest-host hybrid assemblies are exemplified on the basis of some families of materials, including pillared clays (PILCs), porous clay heterostructures (PCHs), zirconium phosphate (ZrP), layered double hydroxides (LDHs), graphite intercalation compounds (GICs), graphene-based materials, and MXenes. Additionally, a non-exhaustive survey on their possible application in the field of energy through electrochemical storage, mostly as electrode materials but also as electrolyte additives, is presented, including lithium technologies based on lithium ion batteries (LIBs), and beyond LiBs with a focus on possible alternatives such XIBs (X = Na (NIB), K (KIB), Al (AIB), Zn (ZIB), and Cl (CIB)), reversible Mg batteries (RMBs), dual-ion batteries (DIBs), Zn-air and Zn-sulphur batteries and supercapacitors as well as their relevance in other fields related to (opto)electronics. This selective panorama should help readers better understand the reason why ILCs are expected to meet the challenge of tomorrow as electrode materials.
Collapse
Affiliation(s)
- Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, AL, Italy.
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Via C. Golgi 19, 20133 Milano, MI, Italy
| | - Jocelyne Brendlé
- Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093 Mulhouse CEDEX, France.
| | - Sébastien Cahen
- Institut Jean Lamour - UMR 7198 CNRS-Université de Lorraine, Groupe Matériaux Carbonés, Campus ARTEM - 2 Allée André Guinier, BP 50840, F54011, NancyCedex, Francia
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Klara Melanova
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - Dermot O'Hare
- Chemistry Research Laboratory, University of Oxford Department of Chemistry, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Pierre Rabu
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS - Université de Strasbourg, UMR7504, 23 rue du Loess, BP43, 67034 Strasbourg cedex 2, France
| | - Fabrice Leroux
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, UMR CNRS 6296, Clermont Auvergne INP, 24 av Blaise Pascal, BP 80026, 63171 Aubière cedex, France.
| |
Collapse
|
4
|
Choudhary P, Kumari K, Sharma D, Kumar S, Krishnan V. Surface Nanoarchitectonics of Boron Nitride Nanosheets for Highly Efficient and Sustainable ipso-Hydroxylation of Arylboronic Acids. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9412-9420. [PMID: 36775910 DOI: 10.1021/acsami.2c21545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
One of the important industrial processes commonly employed in the pharmaceutical, explosive, and plastic manufacturing industries is ipso-hydroxylation of arylboronic acids. In this work, a straightforward, metal-free methodology for the synthesis of phenols from arylboronic acids has been demonstrated using hydroxyl functionalized boron nitride (BN-OH) nanosheets. The functionalized hydroxyl groups on the BN nanosheets act as the active sites for the hydroxylation reaction to take place. The detailed optimization of reaction parameters was done in order to attain high catalytic efficiency, and the reactions were conducted in water, which eliminates the use of toxic solvents. The as-synthesized catalysts exhibited excellent recyclability and reusability in addition to high product yields and good turnover numbers. The green metrics parameters were also evaluated for the model reaction to examine the sustainable nature of the developed protocol. The use of BN-OH catalysts for the ipso-hydroxylation reactions under base-free and metal-free conditions using environmentally benign solvents is utmost desired for industrial processes and can pave a way toward sustainable organic catalysis.
Collapse
Affiliation(s)
- Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| | - Kamlesh Kumari
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| | - Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| | - Sahil Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| |
Collapse
|
5
|
Lin S, Liu J, Ma L. Ni@C Catalyzed Hydrogenation of Acetophenone to Phenylethanol under Industrial Mild Conditions in Flow Reactor. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00513h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic hydrogenation of organic substrates containing plenty of unsaturated functional groups is an important step in the industrial preparation of fine chemicals and has always been a hot spot...
Collapse
|
6
|
Chen M, Xia J, Li H, Zhao X, Peng Q, Wang J, Gong H, Dai S, An P, Wang H, Hou Z. A Cationic Ru(II) Complex Intercalated into Zirconium Phosphate Layers Catalyzes Selective Hydrogenation via Heterolytic Hydrogen Activation. ChemCatChem 2021. [DOI: 10.1002/cctc.202100599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Manyu Chen
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jie Xia
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Huan Li
- Institute of Crystalline Materials Shanxi University Taiyuan 030006 Shanxi P. R. China
| | - Xiuge Zhao
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qingpo Peng
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jiajia Wang
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Honghui Gong
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Pengfei An
- Institute of High Energy Physics Chinese Academy of Sciences Beijing Synchrotron Radiation Facility (BSRF) Beijing 100049 P. R. China
| | - Haifeng Wang
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
7
|
Bashir A, Ahad S, Malik LA, Qureashi A, Manzoor T, Dar GN, Pandith AH. Revisiting the Old and Golden Inorganic Material, Zirconium Phosphate: Synthesis, Intercalation, Surface Functionalization, and Metal Ion Uptake. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04957] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arshid Bashir
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Kashmir 190006, India
| | - Sozia Ahad
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Kashmir 190006, India
| | - Lateef Ahmad Malik
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Kashmir 190006, India
| | - Aaliya Qureashi
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Kashmir 190006, India
| | - Taniya Manzoor
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Kashmir 190006, India
| | - Ghulam Nabi Dar
- Department of Physics, University of Kashmir, Hazratbal, Srinagar, Kashmir 190006, India
| | - Altaf Hussain Pandith
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Kashmir 190006, India
| |
Collapse
|