1
|
Aslam J, Waseem MA, Wu Y, Sun W, Wang Y. Recent developments in covalent Triazine frameworks for Lithium-ion and Lithium-sulfur batteries. Adv Colloid Interface Sci 2025; 341:103479. [PMID: 40132297 DOI: 10.1016/j.cis.2025.103479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/14/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
The escalating demand for sustainable energy storage solutions has spurred significant research into materials that can efficiently store and convert energy. Among these, Covalent Triazine Frameworks (CTFs) have emerged as a promising class of two-dimensional nanomaterials due to their unique properties which includes permanent porosity, abundant active sites, exceptional stability and structural diversity. This review examines the role of CTFs in enhancing the performance of electrochemical energy storage devices, particularly in LIBs and LSBs as electrode materials. Despite the advantages of CTFs based electrode materials, such as their lightweight nature, design flexibility, and sustainability, they often suffer from low ionic conductivity and durability issues. This review examines recent advancements and design approaches focused on enhancing the electrochemical performance of CTF-based electrodes for lithium-ion (LIBs) and lithium‑sulfur (LSBs) batteries. It also addresses the major challenges that limit the effectiveness of CTFs in energy storage applications and suggests potential strategies for overcoming these obstacles. The primary aim of this review is to offer a thorough and detailed overview of the current state of research on CTFs. By critically analyzing existing work and highlighting future research directions, this review intends to support the advancement of CTF-based technologies in pursuit of more efficient and sustainable energy storage solutions.
Collapse
Affiliation(s)
- Junaid Aslam
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Muhammad Ahsan Waseem
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Yibo Wu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Weiwei Sun
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Yong Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, 99 Shangda Road, Shanghai 200444, PR China.
| |
Collapse
|
2
|
George NS, Singh G, Bahadur R, Kumar P, Ramadass K, Sathish CI, Benzigar M, Sajan D, Aravind A, Vinu A. Recent Advances in Functionalized Biomass-Derived Porous Carbons and their Composites for Hybrid Ion Capacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406235. [PMID: 39031008 PMCID: PMC11425278 DOI: 10.1002/advs.202406235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Hybrid ion capacitors (HICs) have aroused extreme interest due to their combined characteristics of energy and power densities. The performance of HICs lies hidden in the electrode materials used for the construction of battery and supercapacitor components. The hunt is always on to locate the best material in terms of cost-effectiveness and overall optimized performance characteristics. Functionalized biomass-derived porous carbons (FBPCs) possess exquisite features including easy synthesis, wide availability, high surface area, large pore volume, tunable pore size, surface functional groups, a wide range of morphologies, and high thermal and chemical stability. FBPCs have found immense use as cathode, anode and dual electrode materials for HICs in the recent literature. The current review is designed around two main concepts which include the synthesis and properties of FBPCs followed by their utilization in various types of HICs. Among monovalent HICs, lithium, sodium, and potassium, are given comprehensive attention, whereas zinc is the only multivalent HIC that is focused upon due to corresponding literature availability. Special attention is also provided to the critical factors that govern the performance of HICs. The review concludes by providing feasible directions for future research in various aspects of FBPCs and their utilization in HICs.
Collapse
Affiliation(s)
- Nithya S George
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Centre for Advanced Functional Materials, Department of Physics, Bishop Moore College, Mavelikara, Alappuzha, Kerala, 690110, India
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Rohan Bahadur
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Kavitha Ramadass
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - C I Sathish
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mercy Benzigar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Davidson Sajan
- Centre for Advanced Functional Materials, Department of Physics, Bishop Moore College, Mavelikara, Alappuzha, Kerala, 690110, India
| | - Arun Aravind
- Centre for Advanced Functional Materials, Department of Physics, Bishop Moore College, Mavelikara, Alappuzha, Kerala, 690110, India
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
3
|
Kumar P, Singh G, Guan X, Lee J, Bahadur R, Ramadass K, Kumar P, Kibria MG, Vidyasagar D, Yi J, Vinu A. Multifunctional carbon nitride nanoarchitectures for catalysis. Chem Soc Rev 2023; 52:7602-7664. [PMID: 37830178 DOI: 10.1039/d3cs00213f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Catalysis is at the heart of modern-day chemical and pharmaceutical industries, and there is an urgent demand to develop metal-free, high surface area, and efficient catalysts in a scalable, reproducible and economic manner. Amongst the ever-expanding two-dimensional materials family, carbon nitride (CN) has emerged as the most researched material for catalytic applications due to its unique molecular structure with tunable visible range band gap, surface defects, basic sites, and nitrogen functionalities. These properties also endow it with anchoring capability with a large number of catalytically active sites and provide opportunities for doping, hybridization, sensitization, etc. To make considerable progress in the use of CN as a highly effective catalyst for various applications, it is critical to have an in-depth understanding of its synthesis, structure and surface sites. The present review provides an overview of the recent advances in synthetic approaches of CN, its physicochemical properties, and band gap engineering, with a focus on its exclusive usage in a variety of catalytic reactions, including hydrogen evolution reactions, overall water splitting, water oxidation, CO2 reduction, nitrogen reduction reactions, pollutant degradation, and organocatalysis. While the structural design and band gap engineering of catalysts are elaborated, the surface chemistry is dealt with in detail to demonstrate efficient catalytic performances. Burning challenges in catalytic design and future outlook are elucidated.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Xinwei Guan
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Jangmee Lee
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Rohan Bahadur
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Devthade Vidyasagar
- School of Material Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
4
|
Wang Y, Zhu X, Yang M, Ma H, Li R, Zhang J, Zhao Q, Ren J, Wang X, Yu H, Gao J, Hu M, Yang J. Fe Powder Catalytically Synthesized C 3N 3 toward High-Performance Anode Materials of Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22051-22064. [PMID: 37104816 DOI: 10.1021/acsami.3c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recently, carbon nitrides and their carbon-based derivatives have been widely studied as anode materials of lithium-ion batteries due to their graphite-like structure and abundant nitrogen active sites. In this paper, a layered carbon nitride material C3N3 consisting of triazine rings with an ultrahigh theoretical specific capacity was designed and synthesized by an innovative method based on Fe powder-catalyzed carbon-carbon coupling polymerization of cyanuric chloride at 260 °C, with reference to the Ullmann reaction. The structural characterizations indicated that the as-synthesized material had a C/N ratio close to 1:1 and a layered structure and only contained one type of nitrogen, suggesting the successful synthesis of C3N3. When used as a lithium-ion battery anode, the C3N3 material showed a high reversible specific capacity up to 842.39 mAh g-1 at 0.1 A g-1, good rate capability, and excellent cycling stability attributed to abundant pyridine nitrogen active sites, large specific surface area, and good structure stability. Ex situ XPS results indicated that Li+ storage relies on the reversible transformation of -C=N- and -C-N- groups as well as the formation of bridge-connected -C=C- bonds. To further optimize the performance, the reaction temperature was further increased to synthesize a series of C3N3 derivatives for the enhanced specific surface area and conductivity. The resulting derivative prepared at 550 °C showed the best electrochemical performance, with an initial specific capacity close to 900 mAh g-1 at 0.1 A g-1 and good cycling stability (94.3% capacity retention after 500 cycles at 1 A g-1). This work will undoubtedly inspire the further study of high-capacity carbon nitride-based electrode materials for energy storage.
Collapse
Affiliation(s)
- Yan Wang
- Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Xiaoran Zhu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingsheng Yang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Huige Ma
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianze Zhang
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, Nanning 530004, China
| | - Qian Zhao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Jiayi Ren
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xinyu Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiping Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Mingjun Hu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Jun Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
| |
Collapse
|
5
|
Wu KL, Zhang WW, Jiang TB, Wu M, Liu W, Wang HM, Hou QX. Structure regulated 3D flower-like lignin-based anode material for lithium-ion batteries and its storage kinetics. Int J Biol Macromol 2023; 227:146-157. [PMID: 36529218 DOI: 10.1016/j.ijbiomac.2022.12.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
As a green sustainable material, lignin-derived porous carbon (LPC) exhibits great application potential when used as the anode material in lithium-ion batteries (LIBs), but the applications are limited by the heterogeneity of the lignin precursor. Therefore, it is crucial to reveal the relationship among lignin properties, porous carbon structure and the kinetics of lithium-ion storage. Herein, LPCs from fractionated lignin have been prepared by an eco-friendly and recyclable activator. The structure of the LPCs was regulated by adjusting the molecular weight, linkage abundance and glass transition temperature (Tg) of lignin macromolecules. As the anode material of LIBs, the prepared 3D flower-like LPCE70 could achieve a reversible capacity of 528 mAh g-1 at a current density of 0.2 A g-1 after 200 cycles, 63 % higher than that of commercial graphite. Furthermore, kinetic calculations of lithium-ion storage behavior of LPCs were firstly used to confirm the contribution ratio of diffusion-controlled behavior and capacitive effect. Lignin with a high linkage abundance could yield LPCE70 with the largest interlayer spacing and specific surface area to maximize lithium-ion storage from both diffusion-controlled and capacitive contributions of specific capacities. This work provides a green, facile and effective pathway for value-added utilization of lignin in LIBs.
Collapse
Affiliation(s)
- Kai-Li Wu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wen-Wen Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tong-Bao Jiang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ming Wu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Han-Min Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Qing-Xi Hou
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
6
|
Wang C, Yang D, Zhang W, Qin Y, Huang S, Liu W, Qiu X, Yi C. Explosion Strategy Engineering Oxygen-Functionalized Groups and Enlarged Interlayer Spacing of the Carbon Anode for Enhanced Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4371-4384. [PMID: 36633362 DOI: 10.1021/acsami.2c21638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Amorphous carbon monoliths with tunable microstructures are candidate anodes for future lithium-based energy storage. Enhancing lithium storage capability and solid-state diffusion kinetics are the precondition for practical applications. Transforming intrinsic oxygen-rich defects into active sites and engineering enlarged interlayer spacing are of great importance. Herein, a novel explosion strategy is designed based on oxalate pyrolysis producing CO and CO2 to successfully prepare lignin-derived carbon monolith (LSCM) with active carbonyl (C═O) groups and enlarged interlayer spacing. Explosion promotes the demethylation of methoxyl groups and cleavage of carboxyl groups to form C═O groups. CO2 etches carbon atoms in a short time to improve the heteroatom level, expanding the interlayer spacing. ZnC2O4 is decomposed at 400 °C, simultaneously producing CO and CO2, which constructs less C═O groups and large interlayer spacing. MgC2O4 is decomposed at 450 and 480 °C, staged-weakly producing CO and CO2, which constructs more C═O groups and larger interlayer spacing. CaC2O4 is decomposed at 480 and 700 °C, staged-uniformly producing CO and CO2, which constructs abundant C═O groups and largest interlayer spacing. The LSCM prepared by staged-uniform explosion exhibits high lithium storage capacity, superior rate capability, and cycling performance. The assembled lithium ion capacitor device achieves excellent energy/power densities of 78 Wh kg-1/100 W kg-1 and superior durability (capacitance retention of 8 4.6% after 20,000 cycles). This work gives a novel insight to engineer advanced oxygen-functionalized carbons for enhanced lithium storage.
Collapse
Affiliation(s)
- Caiwei Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou510641, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou510641, China
| | - Wenli Zhang
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, Jieyang522000, China
| | - Yanlin Qin
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, Jieyang522000, China
| | - Si Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou510641, China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou510641, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou510006, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, Jieyang522000, China
| | - Conghua Yi
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou510641, China
| |
Collapse
|
7
|
Ahmed F, Kokulnathan T, Umar A, Akbar S, Kumar S, Shaalan NM, Arshi N, Alam MG, Aljaafari A, Alshoaibi A. Zinc Oxide/Phosphorus-Doped Carbon Nitride Composite as Potential Scaffold for Electrochemical Detection of Nitrofurantoin. BIOSENSORS 2022; 12:bios12100856. [PMID: 36290993 PMCID: PMC9599398 DOI: 10.3390/bios12100856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/06/2023]
Abstract
Herein, we present an electrocatalyst constructed by zinc oxide hexagonal prisms/phosphorus-doped carbon nitride wrinkles (ZnO HPs/P-CN) prepared via a facile sonochemical method towards the detection of nitrofurantoin (NF). The ZnO HPs/P-CN-sensing platform showed amplified response and low-peak potential compared with other electrodes. The exceptional electrochemical performance could be credited to ideal architecture, rapid electron/charge transfer, good conductivity, and abundant active sites in the ZnO HPs/P-CN composite. Resulting from these merits, the ZnO HPs/P-CN-modified electrode delivered rapid response (2 s), a low detection limit (2 nM), good linear range (0.01-111 µM), high sensitivity (4.62 µA µM-1 cm2), better selectivity, decent stability (±97.6%), and reproducibility towards electrochemical detection of NF. We further demonstrated the feasibility of the proposed ZnO HPs/P-CN sensor for detecting NF in samples of water and human urine. All the above features make our proposed ZnO HPs/P-CN sensor a most promising probe for detecting NF in natural samples.
Collapse
Affiliation(s)
- Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Shalendra Kumar
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Department of Physics, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Nagih M. Shaalan
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Nishat Arshi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Mohd Gulfam Alam
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Abdullah Aljaafari
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Adil Alshoaibi
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
8
|
Radhakrishnan D, Mohanan S, Choi G, Choy JH, Tiburcius S, Trinh HT, Bolan S, Verrills N, Tanwar P, Karakoti A, Vinu A. The emergence of nanoporous materials in lung cancer therapy. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:225-274. [PMID: 35875329 PMCID: PMC9307116 DOI: 10.1080/14686996.2022.2052181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
Lung cancer is one of the most common cancers, affecting more than 2.1 million people across the globe every year. A very high occurrence and mortality rate of lung cancer have prompted active research in this area with both conventional and novel forms of therapies including the use of nanomaterials based drug delivery agents. Specifically, the unique physico-chemical and biological properties of porous nanomaterials have gained significant momentum as drug delivery agents for delivering a combination of drugs or merging diagnosis with targeted therapy for cancer treatment. This review focuses on the emergence of nano-porous materials for drug delivery in lung cancer. The review analyses the currently used nanoporous materials, including inorganic, organic and hybrid porous materials for delivering drugs for various types of therapies, including chemo, radio and phototherapy. It also analyses the selected research on stimuli-responsive nanoporous materials for drug delivery in lung cancer before summarizing the various findings and projecting the future of emerging trends. This review provides a strong foundation for the current status of the research on nanoporous materials, their limitations and the potential for improving their design to overcome the unique challenges of delivering drugs for the treatment of lung cancer.
Collapse
Affiliation(s)
- Deepika Radhakrishnan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shan Mohanan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Goeun Choi
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan31116, Republic of Korea
- College of Science and Technology, Dankook University, Cheonan31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan31116, Korea
| | - Jin-Ho Choy
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan31116, Republic of Korea
- Course, College of Medicine, Dankook UniversityDepartment of Pre-medical, Cheonan31116, Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
| | - Steffi Tiburcius
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Hoang Trung Trinh
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shankar Bolan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Nikki Verrills
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellness, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Pradeep Tanwar
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellness, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
9
|
Cao X, Zhang Y, Luo C, Yin Y, Huang Y. FeS2 Nanoparticles Encapsulated in S/N Co-Doped Carbon Nanofibers With a Three-Dimensional Multi-Channel Structure for Lithium-Ion Batteries. Front Chem 2022; 10:957462. [PMID: 35910740 PMCID: PMC9334685 DOI: 10.3389/fchem.2022.957462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Pyrite (FeS2) is one of the potential candidates for advanced rechargeable Li-ion batteries (LIBs) owing to its inherent capacity (849 mAh g−1), environmental friendliness, and abundant natural resources. However, the volume expansion of FeS2 and the dissolution of polysulfide in the electrochemical reaction severely limit its application in the field of energy conversion and storage. Herein, FeS2 nanoparticles are encapsulated in S/N co-doped three-dimensional multi-channel structural carbon nanofibers (FeS2@CNFs) through the electrospinning method. As a cathode material for LIBs, FeS2@CNFs demonstrated excellent rate property and cyclic stability. The 3FeS2@CNFs (weight ratio of FeS2 is 30%) present the initial capacity of 1,336.7 mAh g−1 and the remaining 856.5 mAh g−1 at 0.02A g−1 after 100 circles. The favorable electrochemical properties have confirmed that carbon nanofibers can enhance the electroconductivity of electrodes, reduce the volume collapse of FeS2, and remit the dissolution of polysulfide during the Li+ ions insertion/de-insertion process. In addition, co-doped S/N can supply abundant active sites for electrochemical reactions, providing enough space for Li+ ion storage. The results indicate that 3FeS2@CNFs is a cathode with a developmental prospect for LIBs.
Collapse
Affiliation(s)
- Xiaochang Cao
- College of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
- Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan, China
| | - Yi Zhang
- Research Center for Corrosion and Erosion Process Control of Equipment and Material in Marine Harsh Environment, Guangzhou Maritime University, Guangzhou, China
| | - Chujiang Luo
- Research Center for Corrosion and Erosion Process Control of Equipment and Material in Marine Harsh Environment, Guangzhou Maritime University, Guangzhou, China
| | - Yansheng Yin
- Research Center for Corrosion and Erosion Process Control of Equipment and Material in Marine Harsh Environment, Guangzhou Maritime University, Guangzhou, China
| | - Yingying Huang
- Research Center for Corrosion and Erosion Process Control of Equipment and Material in Marine Harsh Environment, Guangzhou Maritime University, Guangzhou, China
- *Correspondence: Yingying Huang,
| |
Collapse
|
10
|
Besharat F, Ahmadpoor F, Nezafat Z, Nasrollahzadeh M, Manwar NR, Fornasiero P, Gawande MB. Advances in Carbon Nitride-Based Materials and Their Electrocatalytic Applications. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Farzaneh Besharat
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Fatemeh Ahmadpoor
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | | | - Nilesh R. Manwar
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit, ICCOM-CNR Trieste Research Unit, University of Trieste, Via Licio Giorgieri 1, I-34127 Trieste, Italy
| | - Manoj B. Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra 431203, India
| |
Collapse
|
11
|
Zhang XH, Jiang R, Fan CY, Xie D, Li B, Zhang JP, Wu XL. Engineering All-Purpose Amorphous Carbon Nanotubes with High N/O-Co-Doping Content to Bridge the Alkali-Ion Batteries and Li Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006566. [PMID: 33734587 DOI: 10.1002/smll.202006566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/20/2021] [Indexed: 06/12/2023]
Abstract
All-purpose electrode materials (APEMs), which can be effectively available on not only alkali-ion batteries but also emerging Li metal batteries, are urgently pursued to open up cost-efficient tactics for practical application of energy storage systems (ESSs), but still remain challenging. Herein, the hierarchical porous carbon nanotubes network (NOPCT) with well-tailored nanoarchitecture and high N/O-co-doping content (20.6 at%) is developed to present large-span application on ESSs. As for Li/Na-ion batteries, the NOPCT delivered excellent cycle stability and robust rate performance in a conventional ester-based electrolyte. Moreover, NOPCT also serving as a metal Li host can effectively guide smooth and uniform Li nucleation/growth to enhance the cycle stability of hybrid Li metal anodes. In addition, the NOPCT played an important role in the sustainability of sulfur electrodes, promising the feasibility of shared NOPCT for practical Li-S batteries. First-principle calculations demonstrate that graphitic-N and CO function groups favor for improving electron conductivity while the pyridinic-N and CO function group make sense for improved Li/Na adsorption and affinity through Lewis acid-base interaction, enlightening the interplay between various doped categories on improved electrochemical performance of NOPCT. This work provides profound theoretical and experimental insight into the design and development of APEMs for advanced ESSs.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Ru Jiang
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Chao-Ying Fan
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Dan Xie
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Bao Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Jing-Ping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Xing-Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| |
Collapse
|
12
|
Dang Q, Zhang X, Liu W, Wang Y, Dou G, Zhang H, Zhang G. Hierarchical porous N,S‐codoped carbon material derived from halogenated polymer for battery applications. NANO SELECT 2021. [DOI: 10.1002/nano.202000168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Qidong Dang
- Al‐ion Battery Research Center Department of Electrical Engineering and Automation Shandong University of Science and Technology Qingdao China
| | - Xu Zhang
- School of Chemical Engineering and Technology North University of China Taiyuan China
| | - Wenqiang Liu
- Al‐ion Battery Research Center Department of Electrical Engineering and Automation Shandong University of Science and Technology Qingdao China
| | - Yaqun Wang
- Al‐ion Battery Research Center Department of Electrical Engineering and Automation Shandong University of Science and Technology Qingdao China
| | - Gang Dou
- Al‐ion Battery Research Center Department of Electrical Engineering and Automation Shandong University of Science and Technology Qingdao China
| | - Han Zhang
- Key Laboratory of Noise and Vibration Institute of Acoustics Chinese Academy of Sciences Beijing China
| | - Guoxin Zhang
- Al‐ion Battery Research Center Department of Electrical Engineering and Automation Shandong University of Science and Technology Qingdao China
| |
Collapse
|
13
|
Fan M, Yang Z, Lin Z, Xiong X. Facile synthesis of uniform N-doped carbon-coated TiO 2 hollow spheres with enhanced lithium storage performance. NANOSCALE 2021; 13:2368-2372. [PMID: 33459748 DOI: 10.1039/d0nr07659g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Great efforts, such as nano-structuring and carbon coating, have been devoted to addressing the poor rate performance of TiO2 anodes in lithium ion batteries, which is mainly caused by sluggish Li ion diffusion and poor electrical conductivity of the bulk material. However, the complicated fabrication processes make most of these strategies much low practical significance. Herein, a scalable and facile strategy based on sacrificial template-accelerated hydrolysis and polydopamine coating is proposed to manufacture uniform N-doped carbon-coated TiO2 hollow spheres. The nanostructured hollow structure can shorten the path of Li+ insertion/extraction in the electrode material. More importantly, the uniform carbon layer can improve the electronic conductivity of TiO2 during long-term cycling. Thus, a reversible capacity can be obtained of as high as 390.2 mA h g-1 at a current density of 0.1 A g-1. Furthermore, a high capacity of 166.3 mA h g-1 after 2000 cycles at 5.0 A g-1 shows that the carbon-coated TiO2 hollow spheres deliver good capacity retention and cycling performance.
Collapse
Affiliation(s)
- Mengna Fan
- Guangzhou Key Laboratory of Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhonghu Yang
- Guangzhou Key Laboratory of Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhihua Lin
- Guangzhou Key Laboratory of Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xunhui Xiong
- Guangzhou Key Laboratory of Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Zhong P, Wang K, Wang X, Lu Z, Xie J, Cao Y. Hollow porous nitrogen-doped carbon embedded with ultrafine Co nanoparticles boosting lithium-ion storage. CrystEngComm 2021. [DOI: 10.1039/d0ce01847c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hollow porous nitrogen-doped carbon embedded with ultrafine Co nanoparticles (Co@NC) was synthesized by a facile self-template strategy, which exhibited excellent cycling stability and remarkable rate performance.
Collapse
Affiliation(s)
- Ping Zhong
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials, Autonomous Region
- College of Chemistry
- Xinjiang University
| | - Kun Wang
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials, Autonomous Region
- College of Chemistry
- Xinjiang University
| | - Xingchao Wang
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials, Autonomous Region
- College of Chemistry
- Xinjiang University
| | - Zhenjiang Lu
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials, Autonomous Region
- College of Chemistry
- Xinjiang University
| | - Jing Xie
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials, Autonomous Region
- College of Chemistry
- Xinjiang University
| | - Yali Cao
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Key Laboratory of Advanced Functional Materials, Autonomous Region
- College of Chemistry
- Xinjiang University
| |
Collapse
|
15
|
Mazzanti S, Savateev A. Emerging Concepts in Carbon Nitride Organic Photocatalysis. Chempluschem 2020; 85:2499-2517. [PMID: 33215877 DOI: 10.1002/cplu.202000606] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Indexed: 01/01/2023]
Abstract
Carbon nitrides encompass a class of transition-metal-free materials possessing numerous advantages such as low cost (few Euros per gram), high chemical stability, broad tunability of redox potentials and optical bandgap, recyclability, and a high absorption coefficient (>105 cm-1 ), which make them highly attractive for application in photoredox catalysis. In this Review, we classify carbon nitrides based on their unique properties, structure, and redox potentials. We summarize recently emerging concepts in heterogeneous carbon nitride photocatalysis, with an emphasis on the synthesis of organic compounds: 1) Illumination-Driven Electron Accumulation in Semiconductors and Exploitation (IDEASE); 2) singlet-triplet intersystem crossing in carbon nitride excited states and related energy transfer; 3) architectures of flow photoreactors; and 4) dual metal/carbon nitride photocatalysis. The objective of this Review is to provide a detailed overview regarding innovative research in carbon nitride photocatalysis focusing on these topics.
Collapse
Affiliation(s)
- Stefano Mazzanti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces Research Campus Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Aleksandr Savateev
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces Research Campus Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
16
|
Adekoya D, Qian S, Gu X, Wen W, Li D, Ma J, Zhang S. DFT-Guided Design and Fabrication of Carbon-Nitride-Based Materials for Energy Storage Devices: A Review. NANO-MICRO LETTERS 2020; 13:13. [PMID: 34138201 PMCID: PMC8187489 DOI: 10.1007/s40820-020-00522-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/16/2020] [Indexed: 05/19/2023]
Abstract
Carbon nitrides (including CN, C2N, C3N, C3N4, C4N, and C5N) are a unique family of nitrogen-rich carbon materials with multiple beneficial properties in crystalline structures, morphologies, and electronic configurations. In this review, we provide a comprehensive review on these materials properties, theoretical advantages, the synthesis and modification strategies of different carbon nitride-based materials (CNBMs) and their application in existing and emerging rechargeable battery systems, such as lithium-ion batteries, sodium and potassium-ion batteries, lithium sulfur batteries, lithium oxygen batteries, lithium metal batteries, zinc-ion batteries, and solid-state batteries. The central theme of this review is to apply the theoretical and computational design to guide the experimental synthesis of CNBMs for energy storage, i.e., facilitate the application of first-principle studies and density functional theory for electrode material design, synthesis, and characterization of different CNBMs for the aforementioned rechargeable batteries. At last, we conclude with the challenges, and prospects of CNBMs, and propose future perspectives and strategies for further advancement of CNBMs for rechargeable batteries.
Collapse
Affiliation(s)
- David Adekoya
- Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Shangshu Qian
- Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Xingxing Gu
- Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - William Wen
- Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Dongsheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, People's Republic of China
| | - Jianmin Ma
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou, People's Republic of China
| | - Shanqing Zhang
- Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
17
|
Doping of Graphitic Carbon Nitride with Non-Metal Elements and Its Applications in Photocatalysis. Catalysts 2020. [DOI: 10.3390/catal10101119] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This review outlines the latest research into the design of graphitic carbon nitride (g-C3N4) with non-metal elements. The emphasis is put on modulation of composition and morphology of g-C3N4 doped with oxygen, sulfur, phosphor, nitrogen, carbon as well as nitrogen and carbon vacancies. Typically, the various methods of non-metal elements introducing in g-C3N4 have been explored to simultaneously tune the textural and electronic properties of g-C3N4 for improving its response to the entire visible light range, facilitating a charge separation, and prolonging a charge carrier lifetime. The application fields of such doped graphitic carbon nitride are summarized into three categories: CO2 reduction, H2-evolution, and organic contaminants degradation. This review shows some main directions and affords to design the g-C3N4 doping with non-metal elements for real photocatalytic applications.
Collapse
|
18
|
Effect of Nitrogen Doping on the Performance of Mesoporous CMK-8 Carbon Anodes for Li-Ion Batteries. ENERGIES 2020. [DOI: 10.3390/en13194998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Designing carbonaceous materials with heightened attention to the structural properties such as porosity, and to the functionalization of the surface, is a growing topic in the lithium-ion batteries (LIBs) field. Using a mesoporous silica KIT-6 hard template, mesoporous carbons belonging to the OMCs (ordered mesoporous carbons) family, namely 3D cubic CMK-8 and N-CMK-8 were synthesized and thoroughly structurally characterized. XPS analysis confirmed the successful introduction of nitrogen, highlighting the nature of the different nitrogen atoms incorporated in the structure. The work aims at evaluating the electrochemical performance of N-doped ordered mesoporous carbons as an anode in LIBs, underlining the effect of the nitrogen functionalization. The N-CMK-8 electrode reveals higher reversible capacity, better cycling stability, and rate capability, as compared to the CMK-8 electrode. Coupling the 3D channel network with the functional N-doping increased the reversible capacity to ~1000 mAh·g−1 for the N-CMK-8 from ~450 mAh·g−1 for the undoped CMK-8 electrode. A full Li-ion cell was built using N-CMK-8 as an anode, commercial LiFePO4, a cathode, and LP30 commercial electrolyte, showing stable performance for 100 cycles. The combination of nitrogen functionalization and ordered porosity is promising for the development of high performing functional anodes.
Collapse
|
19
|
Zheng Z, Wu HH, Liu H, Zhang Q, He X, Yu S, Petrova V, Feng J, Kostecki R, Liu P, Peng DL, Liu M, Wang MS. Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets. ACS NANO 2020; 14:9545-9561. [PMID: 32658458 DOI: 10.1021/acsnano.9b08575] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conversion-type transition-metal phosphide anode materials with high theoretical capacity usually suffer from low-rate capability and severe capacity decay, which are mainly caused by their inferior electronic conductivities and large volumetric variations together with the poor reversibility of discharge product (Li3P), impeding their practical applications. Herein, guided by density functional theory calculations, these obstacles are simultaneously mitigated by confining amorphous FeP nanoparticles into ultrathin 3D interconnected P-doped porous carbon nanosheets (denoted as FeP@CNs) via a facile approach, forming an intriguing 3D flake-CNs-like configuration. As an anode for lithium-ion batteries (LIBs), the resulting FeP@CNs electrode not only reaches a high reversible capacity (837 mA h g-1 after 300 cycles at 0.2 A g-1) and an exceptional rate capability (403 mA h g-1 at 16 A g-1) but also exhibits extraordinary durability (2500 cycles, 563 mA h g-1 at 4 A g-1, 98% capacity retention). By combining DFT calculations, in situ transmission electron microscopy, and a suite of ex situ microscopic and spectroscopic techniques, we show that the superior performances of FeP@CNs anode originate from its prominent structural and compositional merits, which render fast electron/ion-transport kinetics and abundant active sites (amorphous FeP nanoparticles and structural defects in P-doped CNs) for charge storage, promote the reversibility of conversion reactions, and buffer the volume variations while preventing pulverization/aggregation of FeP during cycling, thus enabling a high rate and highly durable lithium storage. Furthermore, a full cell composed of the prelithiated FeP@CNs anode and commercial LiFePO4 cathode exhibits impressive rate performance while maintaining superior cycling stability. This work fundamentally and experimentally presents a facile and effective structural engineering strategy for markedly improving the performance of conversion-type anodes for advanced LIBs.
Collapse
Affiliation(s)
- Zhiming Zheng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian 361005, China
| | - Hong-Hui Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Haodong Liu
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Qiaobao Zhang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian 361005, China
| | - Xin He
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sicen Yu
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Victoria Petrova
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Jun Feng
- Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science & Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Robert Kostecki
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ping Liu
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Dong-Liang Peng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian 361005, China
| | - Meilin Liu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ming-Sheng Wang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|