1
|
Pang S, Ma L, Yang Y, Chen H, Lu L, Yang S, Baeyens J, Si Z, Qin P. A High-Quality Mixed Matrix Membrane with Nanosheets Assembled and Uniformly Dispersed Fillers for Ethanol Recovery. Macromol Rapid Commun 2024; 45:e2400384. [PMID: 39096156 DOI: 10.1002/marc.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Indexed: 08/05/2024]
Abstract
A high-quality filler within mixed matrix membranes, coupled with uniform dispersity, endows a high-efficiency transfer pathway for the significant improvement on separation performance. In this work, a zeolite-typed MCM-22 filler is reported that is doped into polydimethylsiloxane (PDMS) matrix by ultrafast photo-curing technique. The unique structure of nanosheets assembly layer by layer endows the continuous transfer channels towards penetrate molecules because of the inter-connective nanosheets within PDMS matrix. Furthermore, an ultrafast freezing effect produced by fast photo-curing is used to overcome the key issue, namely filler aggregation, and further eliminates defects. When pervaporative separating a 5 wt% ethanol aqueous solution, the resulting MCM-22/PDMS membrane exhibits an excellent membrane flux of 1486 g m-2 h-1 with an ethanol separation factor of 10.2. Considering a biobased route for ethanol production, the gas stripping and vapor permeation through this membrane also shows a great enrichment performance, and the concentrated ethanol is up to 65.6 wt%. Overall, this MCM-22/PDMS membrane shows a high separation ability for ethanol benefited from a unique structure deign of fillers and ultrafast curing speed of PDMS, and has a great potential for bioethanol separation from cellulosic ethanol fermentation.
Collapse
Affiliation(s)
- Siyu Pang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liang Ma
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai, 201208, P. R. China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Huidong Chen
- High-Tech Reacher Institute, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lu Lu
- Paris Curie Engineer School, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Jan Baeyens
- Department of Chemical Engineering, Sint-Katelijne-Waver, Ku Leuven, 2860, Belgium
| | - Zhihao Si
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Zhu T, Dong J, Liu H, Wang Y. Controllable hydrogen-bonded poly(dimethylsiloxane) (PDMS) membranes for ultrafast alcohol recovery. MATERIALS HORIZONS 2023; 10:3024-3033. [PMID: 37194492 DOI: 10.1039/d3mh00250k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The lack of efficient separation membranes limits the development of bio-alcohol purification via a pervaporation process. In this work, novel controllable hydrogen-bonded poly(dimethylsiloxane) (PDMS) membranes are prepared from self-synthesized supramolecular elastomers for alcohol recovery. Different from the conventional covalently-bonded PDMS membranes, the hydrogen-bonding content and therefore the crosslinking degree in the as-synthesized PDMS membranes can be exactly regulated, by the suitable molecular design of the supramolecular elastomers. The effects of hydrogen-bonding content on the flexibility of the polymer chains and the separation performance of the resultant supramolecular membranes are investigated in detail. In comparison with the state-of-the-art polymeric membranes, the novel controllable hydrogen-bonded supramolecular PDMS membrane exhibits ultrahigh fluxes for ethanol (4.1 kg m-2 h-1) and n-butanol (7.7 kg m-2 h-1) recovery from 5 wt% alcohol aqueous solutions at 80 °C, with comparable separation factors. The designed supramolecular elastomer is therefore believed to provide valuable insights into the design of next-generation separation membrane materials for molecular separations.
Collapse
Affiliation(s)
- Tengyang Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Jiayu Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Huan Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
3
|
Wang SN, Huang Z, Wang JT, Ru XF, Teng LJ. PVA/UiO-66 mixed matrix membranes for n-butanol dehydration via pervaporation and effect of ethanol. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
4
|
Li G, Si Z, Yang S, Zhuang Y, Pang S, Cui Y, Baeyens J, Qin P. A defects-free ZIF-90/6FDA-Durene membrane based on the hydrogen bonding/covalent bonding interaction for gas separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Pang S, Si Z, Li G, Wu H, Cui Y, Zhang C, Ren C, Yang S, Pang S, Qin P. A fluorinated, defect-free ZIF-8/PDMS mixed matrix membrane for enhancing ethanol pervaporation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
High Hexane Sorption Capacity of Loosely Crosslinked PDMS Rubbers at Low Temperatures: Macromolecular and Physicochemical Elucidation for VOC Recovery. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Xu LH, Li SH, Mao H, Li Y, Zhang AS, Wang S, Liu WM, Lv J, Wang T, Cai WW, Sang L, Xie WW, Pei C, Li ZZ, Feng YN, Zhao ZP. Highly flexible and superhydrophobic MOF nanosheet membrane for ultrafast alcohol-water separation. Science 2022; 378:308-313. [PMID: 36264816 DOI: 10.1126/science.abo5680] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
High-performance pervaporation membranes have potential in industrial separation applications, but overcoming the permeability-selectivity trade-off is a challenge. We report a strategy to create highly flexible metal-organic framework nanosheet (MOF-NS) membranes with a faveolate structure on polymer substrates for alcohol-water separation. The controlled growth followed by a surface-coating method effectively produced flexible and defect-free superhydrophobic MOF-NS membranes. The reversible deformation of the flexible MOF-NS and the vertical interlamellar pathways were captured with electron microscopy. Molecular simulations confirmed the structure and revealed transport mechanism. The ultrafast transport channels in MOF-NS exhibited an ultrahigh flux and a separation factor of 8.9 in the pervaporation of 5 weight % ethanol-water at 40°C, which can be used for biofuel recovery. MOF-NS and polydimethylsiloxane synergistically contribute to the separation performance.
Collapse
Affiliation(s)
- Li-Hao Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Shen-Hui Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Heng Mao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Yan Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Ao-Shuai Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Wei-Min Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Jing Lv
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Wei-Wei Cai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Le Sang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Wen-Wen Xie
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Chan Pei
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Zheng-Zheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Ying-Nan Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Zhi-Ping Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| |
Collapse
|
8
|
Si Z, Wu H, Qin P, Van der Bruggen B. Polydimethylsiloxane based membranes for biofuels pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Pan Y, Chen G, Liu J, Li J, Chen X, Zhu H, Liu G, Zhang G, Jin W. PDMS thin-film composite membrane fabricated by ultraviolet crosslinking acryloyloxy-terminated monomers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Wang Y, Xue T, Si Z, Liu C, Yang S, Li G, Zhuang Y, Qin P. Visible-light-induced ultrafast preparation of PDMS membrane for the pervaporative separation of furfural. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
|
12
|
Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Ren C, Si Z, Qu Y, Li S, Wu H, Meng F, Zhang X, Wang Y, Liu C, Qin P. CF3-MOF enhanced pervaporation selectivity of PDMS membranes for butanol separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120255] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Zhan X, Zhao X, Gao Z, Ge R, Lu J, Wang L, Li J. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Mao H, Li SH, Zhang AS, Xu LH, Lu HX, Lv J, Zhao ZP. Furfural separation from aqueous solution by pervaporation membrane mixed with metal organic framework MIL-53(Al) synthesized via high efficiency solvent-controlled microwave. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Contreras-Martínez J, Mohsenpour S, Ameen AW, Budd PM, García-Payo C, Khayet M, Gorgojo P. High-Flux Thin Film Composite PIM-1 Membranes for Butanol Recovery: Experimental Study and Process Simulations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42635-42649. [PMID: 34469119 DOI: 10.1021/acsami.1c09112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thin film composite (TFC) membranes of the prototypical polymer of intrinsic microporosity (PIM-1) have been prepared by dip-coating on a highly porous electrospun polyvinylidene fluoride (PVDF) nanofibrous support. Prior to coating, the support was impregnated in a non-solvent to avoid the penetration of PIM-1 inside the PVDF network. Different non-solvents were considered and the results were compared with those of the dry support. When applied for the separation of n-butanol/water mixtures by pervaporation (PV), the developed membranes exhibited very high permeate fluxes, in the range of 16.1-35.4 kg m-2 h-1, with an acceptable n-butanol/water separation factor of about 8. The PV separation index (PSI) of the prepared membranes is around 115, which is among the highest PSI values that have been reported so far. Hybrid PV-distillation systems have been designed and modeled in Aspen HYSYS using Aspen Custom Modeler for setting up the PIM-1 TFC and commercial PDMS membranes as a benchmark. The butanol recovery cost for the hybrid systems is compared with a conventional stand-alone distillation process used for n-butanol/water separation, and a 10% reduction in recovery cost was obtained.
Collapse
Affiliation(s)
- Jorge Contreras-Martínez
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Sajjad Mohsenpour
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Ahmed W Ameen
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Peter M Budd
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
| | - Carmen García-Payo
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Madrid Institute for Advanced Studies of Water (IMDEA Water Institute), Avda. Punto Com No 2, Alcalá de Henares, 28805 Madrid, Spain
| | - Patricia Gorgojo
- Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K
- Nanoscience and Materials Institute of Aragón (INMA) CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
17
|
Guan P, Ren C, Shan H, Cai D, Zhao P, Ma D, Qin P, Li S, Si Z. Boosting the pervaporation performance of PDMS membrane for 1-butanol by MAF-6. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04873-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Liu C, Xue T, Yang Y, Ouyang J, Chen H, Yang S, Li G, Cai D, Si Z, Li S, Qin P. Effect of crosslinker 3-methacryloxypropylmethyldimethoxysilane on UV-crosslinked PDMS-PTFPMS block copolymer membranes for ethanol pervaporation. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Kamelian FS, Mohammadi T, Naeimpoor F, Sillanpää M. One-Step and Low-Cost Designing of Two-Layered Active-Layer Superhydrophobic Silicalite-1/PDMS Membrane for Simultaneously Achieving Superior Bioethanol Pervaporation and Fouling/Biofouling Resistance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56587-56603. [PMID: 33269590 DOI: 10.1021/acsami.0c17046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, the coupling of biofuel fermentation broths and pervaporation has been receiving increasing attention. Some challenges, such as the destructive effects of constituents of the real fermentation broth on the membrane performances, the lethal effects of the membrane surface chemical modifiers on the microorganisms, and being expensive, are against this concept. For the first time, a continuous study on the one-step and low-cost preparation of superhydrophobic membranes for bioethanol separation is made to address these challenges. In our previous work, spraying as a fast, scalable, and low-cost procedure was applied to fabricate the one-layered active-layer hydrophobic (OALH) silicalite-1/polydimethylsiloxane (PDMS) membrane on the low-cost mullite support. In this work, the spraying method was adopted to fabricate a two-layered active-layer superhydrophobic (TALS) silicalite-1/PDMS membrane, where the novel active layer consisted of two layers with different hydrophobicities and densities. Contact-angle measurements, surface charge determination, scanning electron microscopy, atomic force microscopy, and pervaporation separation using a 5 wt % ethanol solution were used to statically evaluate the fouling/biofouling resistance and pervaporation performances of OALH and TALS membranes in this study. The TALS membrane presented a better resistance and performance. For dynamic experiments, the Box-Behnken design was used to identify the effects of substrates, microorganisms, and nutrient contents as the leading indicators of fermentation broth on the TALS membrane performances for the long-term utilization. The maximum performances of 1.88 kg/m2·h, 32.34, and 59.04 kg/m2·h concerning the permeation flux, separation factor, and pervaporation separation index were obtained, respectively. The dynamic fouling/biofouling resistance of the TALS membrane was also characterized using energy-dispersive X-ray spectroscopy of all the tested membranes. The TALS membrane demonstrated the synergistic resistance of membrane fouling and biofouling. Eventually, the novel TALS membrane was found to have potential for biofuel recovery, especially bioethanol.
Collapse
Affiliation(s)
- Fariba Sadat Kamelian
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Research and Technology Center of Membrane Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114 Tehran, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Research and Technology Center of Membrane Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
| | - Fereshteh Naeimpoor
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114 Tehran, Iran
| | - Mika Sillanpää
- Department of Civil and Environmental Engineering, Florida International University, 33199 Miami, Florida, United States
| |
Collapse
|
20
|
Si Z, Liu C, Li G, Wang Z, Li J, Xue T, Yang S, Cai D, Li S, Zhao H, Qin P, Tan T. Epoxide-based PDMS membranes with an ultrashort and controllable membrane-forming process for 1-butanol/water pervaporation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Zhao J, Si Z, Shan H, Cai D, Li S, Li G, Lin H, Baeyens J, Wang G, Zhao H, Qin P. Highly Efficient Production of 5-Hydroxymethylfurfural from Fructose via a Bromine-Functionalized Porous Catalyst under Mild Conditions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jing Zhao
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhihao Si
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Houchao Shan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shufeng Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guozhen Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hongfei Lin
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Jan Baeyens
- Beijing Advanced Innovation Centre of Soft Matter and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Guirong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haoning Zhao
- Paris Curie Engineer School, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|