1
|
Feng N, Cheng L, Zhang Y, Tao Y, Wan H, Chen C, Guan G. Multiple-site activation induced by guanidine ionic liquid decorated chromium (III) terephthalate for coupling of carbon dioxide with epoxides. J Colloid Interface Sci 2025; 687:561-572. [PMID: 39978261 DOI: 10.1016/j.jcis.2025.02.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Cycloaddition, as a sound strategy for high-value utilization of carbon dioxide (CO2), has been long pursued, wherein the challenging substrate activation process is a top priority for devising novel heterogeneous catalysts. In this study, a guanidine-based ionic liquid tethering -NH2 groups was designed and integrated with chromium (III) terephthalate (MIL-101(Cr)) through the coordination with unsaturated Cr3+ centers. The developed [NH2TMG]Br@MIL-101(Cr) (TMG represents tetramethylguanidine) decorated with plentiful basic functional groups created a fast channel for the capturing and binding of CO2, while the highly-accessible Lewis acidic sites (Cr3+) and hydrogen bond donors (N+-H) embedded within the nanocomposite synergized to activate the epoxide, synchronously. Under the reaction conditions optimized by response surface methodology (RSM) (103.2 °C, 1.03 MPa, 1.85 h, and 2.53 wt% of catalyst), a satisfactory chloropropene carbonate (CPC) yield of 98.2 % with a selectivity of 99.2 % were achieved. We further demonstrated the heterogeneity and recyclability of [NH2TMG]Br@MIL-101(Cr), and ascertained the substrate expansibility. Moreover, the in-situ diffuse reflectance infrared Fourier-transform spectra (DRIFTS) and density functional theory (DFT) computations afforded deep insights into the proposed multiple-site activation mechanism for CO2 coupling. This study highlighted an innovative pathway for constructing durable IL@MOFs nanocomposites and presented a tangible route to effectively converting CO2.
Collapse
Affiliation(s)
- Nengjie Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, PR China
| | - Linyan Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, PR China
| | - Yukun Zhang
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, PR China
| | - Yujie Tao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, PR China
| | - Hui Wan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, PR China.
| | - Chong Chen
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, PR China.
| | - Guofeng Guan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, PR China
| |
Collapse
|
2
|
Li M, Zhang J, Wei Z, Gao Y, Zhao Y, Teng Y, Wang H, Zhang R, Yang Y. NH 2-MIL-101(Fe) Nanocrystals Synthesized by the Ionic Liquid-Ethanol Interface for Efficient CO 2 Fixation at Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20461-20470. [PMID: 40112227 DOI: 10.1021/acsami.5c01476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
In this study, an ionic liquid-ethanol interface strategy is proposed to synthesize NH2-MIL-101(Fe) nanocrystals at room temperature. The as-synthesized nanocrystals exhibit small crystal sizes, abundant ligand defects, and unsaturated metal sites. The NH2-MIL-101(Fe) nanocrystals present superior catalytic activity for the cycloaddition reaction of CO2 at mild conditions (room temperature and 1 bar CO2 pressure), much higher than the NH2-MIL-101 (Fe) microcrystals synthesized by the conventional solvothermal method. The conversion of propylene oxide catalyzed by NH2-MIL-101(Fe) nanocrystals achieves a 99% yield within 2.5 h, accompanied by a generation rate of carbonate production per gram of catalyst (Rcarbonate) of 52.8 mmol g-1 h-1. In contrast, the system employing NH2-MIL-101(Fe) microcrystals shows a much lower yield of 19.28% and a generation rate (Rcarbonate) of 10.28 mmol g-1 h-1. The NH2-MIL-101(Fe) nanocrystals were further used for the treatment of simulated industrial flue gas conditions with a volume ratio of N2/CO2 = 85:15. The results show the efficient conversion of CO2 at ambient temperature and pressure, even at relatively low CO2 concentrations. This work not only offers a facile, low energy-consumed, and environmentally benign interface method for the fabrication of MOF nanostructures but also provides high-performance systems for CO2 fixation and gas separation.
Collapse
Affiliation(s)
- Meiling Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenhuan Wei
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, P. R. China
| | - Yingzhe Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunan Teng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haoxiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Renjie Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yisen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Liu N, Li Y, Zheng J, Liu B, Liu GN, Wang Y, Wang S. Enhancement of Two Types of CO 2 Conversion by Regulating Functional Thiophene Groups within Zn-MOF. Inorg Chem 2025; 64:4534-4543. [PMID: 40009742 DOI: 10.1021/acs.inorgchem.4c05485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Sustainable conversion of epoxides and propargylic amines using CO2 could produce valuable chemical products. Efficient conversion generally requires harsh conditions such as noble-metal catalysts, cocatalysts, and toxic solvents, thereby underscoring the crucial need for environmentally friendly non-noble-metal metal-organic framework (MOF) catalysts. In this study, we designed a novel zinc-based metal-organic framework (MOF) with a 5-fold interpenetrating diamond framework, specifically {[Zn(DMTDC)(bpy)]·H2O}n (Zn-MOF-2), where H2DMTDC represents 3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid and bpy denotes 4,4'-bipyridine. Zn-MOF-2 serves as a bifunctional heterogeneous catalyst to promote the cyclization reaction of epoxides and propargylamine with CO2 under mild conditions. The isolated yields of the resulting cyclic carbonates and oxazolidinones were 92% and 93%, respectively. Notably, the catalyst maintained good catalytic activity after five catalytic cycles in both types of CO2 conversion. Control experiments confirmed the effective catalytic activity of the Zn2+ Lewis acid sites in Zn-MOF-2. The isostructural CPO-5 assembled from 4,4'-biphenyldicarboxylic acid has also been demonstrated to catalyze the cycloaddition of epoxides and CO2 but with an inferior performance in catalyzing the carboxyl cyclization of propargylic amines. This result shows that the thiophene ring in the ligand plays a pronounced role in the catalytic performance. The research will enhance the development of effective MOF catalysts for the conversion of CO2.
Collapse
Affiliation(s)
- Nana Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Yongfei Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Jun Zheng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Baojie Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Guang-Ning Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Yong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Suna Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
4
|
Yuan S, Cai W, Zhao L, Wang L, Zhang R, Li J, Wu D, Kong Y. Strong Electrochemiluminescence Response Derived from Ionic Chiral Covalent Organic Frameworks for Enantioselective Discrimination of Amino Acid Enantiomers via an Electrostatic Attraction Effect. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65340-65347. [PMID: 39535151 DOI: 10.1021/acsami.4c15190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Porous chiral materials accompanied by electrochemiluminescence (ECL) activity are rarely reported for enantioselective discrimination because of the big challenges to integrate the stereogenic center and ECL-active unit in the backbone. In the present study, ionic chiral covalent organic frameworks (iCCOFs) consisting of the pyridinium unit as the ECL-active species were prepared by a facile strategy. We were amazed that such iCCOFs could display strong cathodic ECL responses. Meanwhile, the as-prepared ECL-active iCCOFs performed enantioselective ECL quenching toward amino acid enantiomers, attributed to the enhanced photoinduced electron transfer process derived from the formed complex between the iCCOFs and amino acids via an electrostatic attraction effect. The iCCOF with an (S)-configuration was prone to interact with l-amino acids, producing a lower ECL intensity. The maximum intensity ratio between the d- and l-enantiomers was 33.0. Finally, the enantiomeric compositions of the measured amino acids presented a good linear relation with the obtained ECL intensity, which was fit for the determination of samples with unknown enantiomeric purity. In brief, the obtained results convince us that this study advances a new generation of ECL-active iCCOFs and displays great potential in enantioselective sensing.
Collapse
Affiliation(s)
- Shuyi Yuan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lei Zhao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lewei Wang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ru Zhang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
5
|
Ye L, Zhang Y, Jin S, Zhou C, Pang J, Luo Y, Yu Y, Xu W. Mechanochemical Synthesis of High-Entropy MOF-74 with Multiple Active Sites for CO 2 Adsorption and Synergistic Conversion. Inorg Chem 2024; 63:20572-20583. [PMID: 39422667 DOI: 10.1021/acs.inorgchem.4c03228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Compared with monometallic metal-organic frameworks (MOFs), the synergistic effect of multiple metals significantly enhances the catalytic performance of the CO2 cycloesterification reaction, leading to improved CO2 adsorption and catalytic conversion capabilities. To investigate this concept, a high-entropy MOF-74 (HE-MOF-74) with a uniform distribution of five distinct metal ions (Zn2+, Mg2+, Ni2+, Co2+, and Cu2+) was successfully synthesized using a straightforward mechanical ball milling technique and comprehensively characterized (including structural, morphological, and physicochemical properties). The results reveal that HE-MOF-74 exhibits significantly increased specific surface area and CO2 adsorption capacity compared with those of monometallic MOF-74. The presence of multiple unsaturated metal centers as Lewis acid sites, oxygen atoms linking the metals, and ligand-based hydroxyl groups serving as base sites enable efficient immobilization of CO2 into cyclic carbonate. This study introduces a novel synthetic approach for the green and efficient production of HE-MOF-74 and proposes a new application for CO2 utilization.
Collapse
Affiliation(s)
- Liang Ye
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Ya Zhang
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Siyang Jin
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Chaohui Zhou
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Junbao Pang
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Yunjie Luo
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Yuhang Yu
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
6
|
Zhao B, Li C, Hu T, Gao Y, Fan L, Zhang X. Robust {Pb 10}-Cluster-Based Metal-Organic Framework for Capturing and Converting CO 2 into Cyclic Carbonates under Mild Conditions. Inorg Chem 2024; 63:14183-14192. [PMID: 39010257 DOI: 10.1021/acs.inorgchem.4c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Developing a highly active catalyst that can efficiently capture and convert carbon dioxide (CO2) into high-value-added energy materials remains a severe challenge, which inspires us to explore effective metal-organic frameworks (MOFs) with high chemical stability and high-density active sites. Herein, we report a robust 3D lead(II)-organic framework of {(Me2NH2)2[Pb5(PTTPA)2(H2O)3]·2DMF·3H2O}n (NUC-111) with unreported [Pb10(COO)22(H2O)6] clusters (abbreviated as {Pb10}) as nodes (H6PTTPA = 4,4',4″-(pyridine-2,4,6-triyl)triisophthalic acid). After thermal activation, NUC-111a is functionalized by the multifarious symbiotic acid-base active sites of open Pb2+ sites and uncoordinated pyridine groups on the inner surface of the void volume. Gas adsorption tests confirm that NUC-111a displays a higher separation performance for mixed gases of f CO2 and CH4 with the selectivity of CO2/CH4 at 273 K and 101 kPa being 31 (1:99, v/v), 23 (15:85, v/v), and 8 (50:50, v/v), respectively. When the temperature rises to 298 K, the selectivity of CO2/CH4 at 101 kPa is 26 (1:99, v/v), 22 (15:85, v/v), and 11 (50:50, v/v). Moreover, activated NUC-111a exhibited excellent catalytic performance, stability, and recyclability for the cycloaddition of CO2 with epoxides under mild conditions. Hence, this work provides valuable insight into designing MOFs with multifunctionality for CO2 capture, separation, and conversion.
Collapse
Affiliation(s)
- Bo Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Chong Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Yanpeng Gao
- College of Chemical Engineering, Ordos Institute of Technology, Ordos 017000, P. R. China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
7
|
Abazari R, Ghorbani N, Shariati J, Varma RS, Qian J. Copper-Based Bio-MOF/GO with Lewis Basic Sites for CO 2 Fixation into Cyclic Carbonates and C-C Bond-Forming Reactions. Inorg Chem 2024; 63:12667-12680. [PMID: 38916987 DOI: 10.1021/acs.inorgchem.4c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Several measures, including crude oil recovery improvement and carbon dioxide (CO2) conversion into valuable chemicals, have been considered to decrease the greenhouse effect and ensure a sustainable low-carbon future. The Knoevenagel condensation and CO2 fixation have been introduced as two principal solutions to these challenges. In the present study for the first time, bio-metal-organic frameworks (MOF)(Cu)/graphene oxide (GO) nanocomposites have been used as catalytic agents for these two reactions. In view of the attendance of amine groups, biological MOFs with NH2 functional groups as Lewis base sites protruding on the channels' internal surface were used. The bio-MOF(Cu)/20%GO performs efficaciously in CO2 fixation, leading to more than 99.9% conversion with TON = 525 via a solvent-free reaction under a 1 bar CO2 atmosphere. It has been shown that these frameworks are highly catalytic due to the Lewis basic sites, i.e., NH2, pyrimidine, and C═O groups. Besides, the Lewis base active sites exert synergistic effects and render bio-MOF(Cu)/10%GO nanostructures as highly efficient catalysts, significantly accelerating Knoevenagel condensation reactions of aldehydes and malononitrile as substrates, thanks to the high TOF (1327 h-1) and acceptable reusability. Bio-MOFs can be stabilized in reactions using GO with oxygen-containing functional groups that contribute as efficient substitutes, leading to an expeditious reaction speed and facilitating substrate absorption.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111 Maragheh, Iran
| | - Nasrin Ghorbani
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111 Maragheh, Iran
| | - Jafar Shariati
- Department of Chemical Engineering, Darab Branch, Islamic Azad University, P.O. Box 74817-83143 Darab, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, São Paulo, Brazil
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
8
|
Gadzikwa T, Matseketsa P. The post-synthesis modification (PSM) of MOFs for catalysis. Dalton Trans 2024; 53:7659-7668. [PMID: 38652070 DOI: 10.1039/d4dt00514g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
While there are myriad ways to construct metal-organic framework (MOF) based catalysts, the introduction of catalytic functionality via covalent post-synthesis functionalization (PSM) offers multiple advantages: (i) a wide range of different catalyst types are generated from a handful of well-known parent MOFs, (ii) MOF catalyst properties can be systematically tuned while changing few variables, and (iii) catalytically active functional groups that would otherwise interfere with MOF assembly can be introduced facilely. This last advantage is particularly crucial for our quest to generate MOF active sites that are decorated with multiple functional groups capable of cooperative activity, analogous to enzyme active sites.
Collapse
Affiliation(s)
- Tendai Gadzikwa
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA.
| | - Pricilla Matseketsa
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA.
| |
Collapse
|
9
|
Chanda A, Mandal SK. A Multivariate 2D Metal-Organic Framework with Open Metal Sites for Catalytic CO 2 Cycloaddition and Cyanosilylation Reactions. Inorg Chem 2024; 63:5598-5610. [PMID: 38478680 DOI: 10.1021/acs.inorgchem.3c04559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
This work reports the synthesis of a dual functional 2D framework, {[Zn2(4-tpom)2(oxdz)2]·4H2O}n (1), at room temperature, where a bent dicarboxylate, oxdz2- (4,4'-(1,3,4-oxadiazole-2,5-diyl)dibenzoate), and a neutral flexible N-donor linker, 4-tpom (tetrakis(4-pyridyloxymethylene)methane), are utilized. Its single-crystal X-ray analysis indicated a 2-fold interpenetrated 2D framework having tetracoordinated Zn(II) centers and dangling pyridyl groups. Its further characterization was carried out with elemental microanalysis, FTIR spectroscopy, TG analysis, and powder X-ray diffraction. The tetracoordinated Zn(II) centers as active Lewis acidic sites and the N atoms of 4-tpom as Lewis basic sites in 1 are explored for its functioning as a heterogeneous catalyst in two important reactions, (i) cycloaddition of CO2 with various epoxides and (ii) cyanosilylation reaction under solvent-free conditions. We could successfully show the cycloaddition of styrene oxide with CO2 (99% conversion) under balloon pressure with low catalyst (0.2-0.3 mol %) and cocatalyst (0.5-0.75 mol %) loadings, which is otherwise difficult to achieve. It was observed that all the substrates (aromatic and aliphatic), irrespective of their sizes, showed conversion percentage >99%. In the cyanosilylation reaction, a conversion of 96% was obtained with 1.5 mol % of 1 at room temperature for 12 h. This framework emerged as an excellent recyclable catalyst for both the reactions.
Collapse
Affiliation(s)
- Alokananda Chanda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
10
|
Li D, Yadav A, Zhou H, Roy K, Thanasekaran P, Lee C. Advances and Applications of Metal-Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300244. [PMID: 38356684 PMCID: PMC10862192 DOI: 10.1002/gch2.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Indexed: 02/16/2024]
Abstract
Metal-organic frameworks (MOFs) that are the wonder material of the 21st century consist of metal ions/clusters coordinated to organic ligands to form one- or more-dimensional porous structures with unprecedented chemical and structural tunability, exceptional thermal stability, ultrahigh porosity, and a large surface area, making them an ideal candidate for numerous potential applications. In this work, the recent progress in the design and synthetic approaches of MOFs and explore their potential applications in the fields of gas storage and separation, catalysis, magnetism, drug delivery, chemical/biosensing, supercapacitors, rechargeable batteries and self-powered wearable sensors based on piezoelectric and triboelectric nanogenerators are summarized. Lastly, this work identifies present challenges and outlines future opportunities in this field, which can provide valuable references.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Anurag Yadav
- Department of ChemistryPondicherry UniversityPuducherry605014India
| | - Hong Zhou
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Kaustav Roy
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | | | - Chengkuo Lee
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| |
Collapse
|
11
|
Cao Q, Huang M, Qian L, Wang J, Wang D, Zheng X. Electron-deficient Fe 3O 4@AC-NH 2@Cu-MOF nanoparticles for enhanced degradation of electron-rich benzene derivatives via synergistic adsorption and catalytic oxidation. Dalton Trans 2024; 53:2265-2274. [PMID: 38196313 DOI: 10.1039/d3dt03431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Benzene derivatives in wastewater have negative impacts on ecosystems and human health, making their removal prior to discharge imperative. In this study, Fe3O4@AC-NH2@Cu-opa (AC-NH2 = aminoclay, Cu-opa = [Cu(opa)(bipy)0.5(H2O)]n (H2opa = 3-(4-oxypyridinium-1-yl) phthalic acid)) nanoparticles (NPs) were synthesized as adsorbent and catalyst for phenolic compound removal from wastewater. Fe3O4@AC-NH2@Cu-opa NPs demonstrated outstanding performance in the adsorption of phenol, exhibiting a remarkable adsorption capacity of up to 166.39 mg g-1 according to the Langmuir model. The composite also exhibited higher Fenton activity toward the degradation of electron-rich organic phenolic pollutants, with a rate approximately 3.4 times higher than that of Fe3O4 alone. The high catalytic activity of the composite was attributed to the large surface area and abundant active sites of the 2D charge-separated Cu-MOF. Meanwhile, the superparamagnetism of the Fe3O4 core enabled magnetic recollection and reuse without any significant loss of activity. Therefore, use of Fe3O4@AC-NH2@Cu-opa/H2O2 shows potential in an efficient method for the removal of phenolic compounds from wastewater.
Collapse
Affiliation(s)
- Qingpeng Cao
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China.
| | - Mengjia Huang
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China.
| | - Libin Qian
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China.
| | - Jin Wang
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China.
| | - Di Wang
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China.
| | - Xubin Zheng
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, China.
| |
Collapse
|
12
|
Pang H, Liu G, Huang D, Zhu Y, Zhao X, Wang W, Xiang Y. Embedding Hydrogen Atom Transfer Moieties in Covalent Organic Frameworks for Efficient Photocatalytic C-H Functionalization. Angew Chem Int Ed Engl 2023:e202313520. [PMID: 37921489 DOI: 10.1002/anie.202313520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/04/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as efficient heterogeneous photocatalysts for a wide range of relatively simple organic reactions, whereas their application in complex organic transformations, like site-selective functionalization of unactivated C-H bonds, is underexplored, which can be mainly attributed to the lack of highly active organophotocatalytic cores. Herein through bonding oxygen atoms at the N-terminus of quinolines in nonsubstituted quinoline-linked COFs (NQ-COFs), we successfully realized the embedding of active hydrogen atom transfer (HAT) moieties into the skeleton of COFs. This novel designed COF (NQ-COFE5 -O), serving as both an excellent photosensitizer and HAT catalyst, exhibited much higher efficiency in C-H functionalization than the corresponding NQ-COFE5 . Specially, we evaluated the photocatalytic performance of NQ-COFE5 -O on ten different substrates, including quinolines, benzothiazole, and benzoxazole, all of which were transferred to desired products in moderate to high yields (up to 93 %). Furthermore, the as-synthesized NQ-COFE5 -O displayed excellent photostability and could be reused with negligible loss of activity for five catalytic cycles.
Collapse
Affiliation(s)
- Huaji Pang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Gang Liu
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Dekang Huang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Yanqiu Zhu
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Xiaodong Zhao
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Wanqin Wang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Yonggang Xiang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| |
Collapse
|
13
|
Yin HQ, Cui MY, Wang H, Peng YZ, Chen J, Lu TB, Zhang ZM. CO 2 Cycloaddition under Ambient Conditions over Cu-Fe Bimetallic Metal-Organic Frameworks. Inorg Chem 2023; 62:13722-13730. [PMID: 37540079 DOI: 10.1021/acs.inorgchem.3c01011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Carbon dioxide cycloaddition into fine chemicals is prospective technology to solve energy crisis and environmental issues. However, high temperature and pressure are usually required in the conventional cycloaddition reactions of CO2 with epoxides. Moreover, metal active sites play a vital role in the CO2 cycloaddition, but it is still unclear. Herein, we select the isostructural MOF-919-Cu-Fe and MOF-919-Cu-Al as models to promote the performance and clarify the effects of metal type on the CO2 cycloaddition. The MOF-919-Cu-Fe with exposed Fe and Cu Lewis acid sites reaches the CO2 cycloaddition with over 99.9% conversion and over 99.9% selectivity at room temperature and a 1 bar CO2 atmosphere, 3.0- and 52.6-fold higher than those of the MOF-919-Cu-Al with Al and Cu sites (33.8%) and the 1H-pyrazole-4-carboxylic acid, Fe, and Cu mixed system (1.9%), respectively. The proposed mechanism demonstrated that the exposed Fe3+ sites facilitate the ring opening of epoxide and CO2 activation to boost the CO2 cycloaddition reaction. This work provides a new insight to tune the catalytic sites of MOFs to achieve high performance for CO2 fixation.
Collapse
Affiliation(s)
- Hua-Qing Yin
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ming-Yang Cui
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hao Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yuan-Zhao Peng
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jia Chen
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
14
|
Hu Y, Abazari R, Sanati S, Nadafan M, Carpenter-Warren CL, Slawin AMZ, Zhou Y, Kirillov AM. A Dual-Purpose Ce(III)-Organic Framework with Amine Groups and Open Metal Sites: Third-Order Nonlinear Optical Activity and Catalytic CO 2 Fixation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37300-37311. [PMID: 37497576 DOI: 10.1021/acsami.3c04506] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The present work focuses on the synthesis and properties of a novel multifunctional cerium(III) MOF, [Ce2(data)3(DMF)4]·DMF (data2-: 2,5-diaminoterephthalate), abbreviated as NH2-Ce-MUM-2. Its crystal structure reveals an intricate 3D 4,5-connected framework with a xah topology. This MOF features unique properties, such as open metal sites, presence of free amino groups, and high stability. Two main applications of NH2-Ce-MUM-2 were investigated: (i) as a heterogeneous catalyst in the CO2 fixation into cyclic carbonates and (ii) as a material with third-order nonlinear optical activity. As a model reaction, the cycloaddition of CO2 to propylene oxide to give the corresponding cyclic carbonate was explored under mild conditions, at the atmospheric pressure of carbon dioxide and in the absence of cocatalyst and added solvent. Various reaction parameters were investigated toward optimization and exploration of substrate scope, revealing up to 99% product yields of cyclic carbonate products. Besides, the structure of NH2-Ce-MUM-2 is highly stable, permitting its recyclability and reusability in further catalytic experiments. The significant contributions of free amino groups and open metal sites within this catalyst were particularly considered when proposing a potential mechanism for the reaction. Z-Scan measurements were used to evaluate the nonlinear optical (NLO) properties of NH2-Ce-MUM-2 at various laser intensities. A high two-photon absorption (TPA) under greater incident intensities shows that NH2-Ce-MUM-2 might be applicable in optical switching devices. Besides, the self-focusing effects of NH2-Ce-MUM-2 under various incident intensities were highlighted by the nonlinear index of refraction (n2). By reporting the synthesis and characterization of a novel MOF, along with its highly promising catalytic and NLO behavior, the current study introduces an additional example of multifunctional material into a growing family of metal-organic frameworks.
Collapse
Affiliation(s)
- Yaxuan Hu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China
| | - Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111, Maragheh, Iran
| | - Marzieh Nadafan
- Department of Physics, Shahid Rajaee Teacher Training University, 16788-15811, Tehran, Iran
| | | | - Alexandra M Z Slawin
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
15
|
Seal N, Palakkal AS, Pillai RS, Neogi S. Coordination Unsaturation and Basic Site-Immobilized Nanochannel in a Chemorobust MOF for 3-Fold-Increased High-Temperature Selectivity and Fixation of CO 2 under Mild Conditions with Nanomolar Recognition of Roxarsone. Inorg Chem 2023; 62:11528-11540. [PMID: 37440273 DOI: 10.1021/acs.inorgchem.3c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
A multifaceted metal-organic framework (MOF) with task-specific site-engineered pores can promise high-temperature and moisture-tolerant capture and non-redox fixation of CO2 under mild conditions as well as ultrasensitive detection of carcinogenic contaminants in water. Herein, we report a pillar-bilayered MOF that holds a nanochannel with contrasting functionalities for both these sustainable applications with improved performance characteristics. The twofold entangled robust framework exhibits CO2 adsorption at elevated temperatures with considerable MOF-gas interaction. Interestingly, CO2 selectivity unveils nearly a 3-fold improvement upon the rise of temperature, affording a CO2/N2 value of 820 at 313 K, which outperforms many porous adsorbents. Additionally, breakthrough simulation establishes complete separation and attests the potential of this MOF in the separation of flue gas mixture. Importantly, minor CO2 loss during multiple capture-release cycles and under a relative humidity of 75% promise practical usability of the material. Density functional theory (DFT) not only portrays the atomistic level snapshots of temperature-triggered CO2 inclusion inside this microporous vessel alongside the role of diverse CO2-philic sites but also validates the basis of N2-phobicity of an azo-functionalized linker on such increased selectivity. The guest-free MOF further demonstrates non-redox and recyclable CO2 fixation with wide epoxide tolerance under solvent-free mild conditions and even works at atmospheric pressure and room temperature. The crucial roles of high-density acid-base sites in both adsorption and catalysis are supported by control experiments and by comparing the activity of an unfunctionalized MOF. The hydrolytic stability and strong luminescence signature benefit the framework in aqueous-phase selective and fast responsive detection of detrimental roxarsone (ROX) with high quenching (7.56 × 104 M-1) and very low sensitivity (68 nM). Apart from varying degrees of an energy-transfer mechanism, the fluorosensing of ROX is comprehensively supported by in-depth DFT studies that manifest alteration of MOF energy levels in the presence of organoarsenic compounds and depict MOF-analyte supramolecular interactions.
Collapse
Affiliation(s)
- Nilanjan Seal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India
| | - Athulya S Palakkal
- Department of Chemistry, School of Basic Sciences, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, India
| | - Renjith S Pillai
- Analytical and Spectroscopy Division, ASCG/PCM, Indian Space Research Organization, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022 Kerala, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India
| |
Collapse
|
16
|
Lv H, Fan L, Hu T, Jiao C, Zhang X. A highly robust cluster-based indium(III)-organic framework with efficient catalytic activity in cycloaddition of CO 2 and Knoevenagel condensation. Dalton Trans 2023; 52:3420-3430. [PMID: 36815544 DOI: 10.1039/d2dt04043c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The efficient catalytic performance displayed by MOFs is decided by an appropriate charge/radius ratio of defect metal sites, large enough solvent-accessible channels and Lewis base sites capable of polarizing substrate molecules. Herein, the solvothermal self-assembly led to a highly robust nanochannel-based framework of {[In4(CPDD)2(μ3-OH)2(DMF)(H2O)2]·2DMF·5H2O}n (NUC-66) with a 56.8% void volume, which is a combination of a tetranuclear cluster [In4(μ3-OH)2(COO)10(DMF)(H2O)2] (abbreviated as {In4}) and a conjugated tetracyclic pentacarboxylic acid ligand of 4,4'-(4-(4-carboxyphenyl)pyridine-2,6-diyl)diisophthalic acid (H5CPDD). To the best of our knowledge, NUC-66 is a rarely reported {In4}-based 3D framework with embedded hierarchical triangular-microporous (2.9 Å) and hexagonal-nanoporous (12.0 Å) channels, which are shaped by six rows of {In4} clusters. After solvent exchange and vacuum drying, the surface of nanochannels in desolvated NUC-66a is modified by unsaturated In3+ ions, Npyridine atoms and μ3-OH groups, all of which display polarization ability towards polar molecules due to their Lewis acidity or basicity. The catalytic experiments performed showed that NUC-66a had high catalytic activity in the cycloaddition reactions of epoxides with CO2 under mild conditions, which should be ascribed to its structural advantages including nanoscale channels, rich bifunctional active sites, large surface areas and chemical stability. Moreover, NUC-66a, as a heterogeneous catalyst, could greatly accelerate the Knoevenagel condensation reactions of aldehydes and malononitrile. Hence, this work confirms that the development of rigid nanoporous cluster-based MOFs built on metal ions with a high charge and large radius ratio will be more likely to realize practical applications, such as catalysis, adsorption and separation of gas, etc.
Collapse
Affiliation(s)
- Hongxiao Lv
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
| | - Tuoping Hu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
| | - Chenxu Jiao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
| |
Collapse
|
17
|
Photothermal catalysis without solvent for fixing CO2 to cyclic carbonate. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
18
|
Xu JH, Peng SF, Shi YK, Ding S, Yang GS, Yang YQ, Xu YH, Jiang CJ, Su ZM. A novel zirconium-based metal-organic framework covalently modified by methyl pyridinium bromide for mild and co-catalyst free conversion of CO 2 to cyclic carbonates. Dalton Trans 2023; 52:659-667. [PMID: 36537538 DOI: 10.1039/d2dt03507c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Building metal-organic frameworks (MOFs) covalently modified by onium halides is a promising approach to develop efficient MOF-based heterogeneous catalysts for the cycloaddition of CO2 to epoxides (CCE) into cyclic carbonates. Herein, we report a novel zirconium-based MOF covalently modified by methyl pyridinium bromide, Zr6O4(OH)4(MPTDC)2.2(N-CH3-MPTDC)3.8Br3.8 ((Br-)CH3-Pyridinium-MOF-1), where MPTDC denotes 3-methyl-4-pyridin-4-yl-thieno[2,3-b] thiophene-2,5-dicarboxylate. The structure and composition of this complex were fully characterized with PXRD, NMR, XPS, TEM and so on. CO2 adsorption experiments show that (Br-)CH3-Pyridinium-MOF-1 has a higher affinity for CO2 than its electrically neutral precursor, which should be attributed to the fact that charging frameworks containing pyridinium salt have stronger polarization to CO2. (Br-)CH3-Pyridinium-MOF-1 integrated reactive Lewis acid sites and Br- nucleophilic anions and exhibited efficient catalytic activity for CCE under ambient pressure in the absence of co-catalysts and solvents. Furthermore, (Br-)CH3-Pyridinium-MOF-1 was recycled after five successive cycles without substantial loss in catalytic activity. The corresponding reaction mechanism also was speculated.
Collapse
Affiliation(s)
- Jia-Hui Xu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Shuai-Feng Peng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yu-Kun Shi
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Shan Ding
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Guang-Sheng Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yu-Qi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yan-Hong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Chun-Jie Jiang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Zhong-Min Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
19
|
Dutta S, More YD, Fajal S, Mandal W, Dam GK, Ghosh SK. Ionic metal-organic frameworks (iMOFs): progress and prospects as ionic functional materials. Chem Commun (Camb) 2022; 58:13676-13698. [PMID: 36421063 DOI: 10.1039/d2cc05131a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metal-organic frameworks (MOFs) have been a research hotspot for the last two decades, witnessing an extraordinary upsurge across various domains in materials chemistry. Ionic MOFs (both anionic and cationic MOFs) have emerged as next-generation ionic functional materials and are an important subclass of MOFs owing to their ability to generate strong electrostatic interactions between their charged framework and guest molecules. Furthermore, the presence of extra-framework counter-ions in their confined nanospaces can serve as additional functionality in these materials, which endows them a significant advantage in specific host-guest interactions and ion-exchange-based applications. In the present review, we summarize the progress and future prospects of iMOFs both in terms of fundamental developments and potential applications. Furthermore, the design principles of ionic MOFs and their state-of-the-art ion exchange performances are discussed in detail and the future perspectives of these promising ionic materials are proposed.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Yogeshwar D More
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Gourab K Dam
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
20
|
Triazole Appended Metal–Organic Framework for CO2 Fixation as Cyclic Carbonates Under Solvent-Free Ambient Conditions. Catal Letters 2022. [DOI: 10.1007/s10562-022-04213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Liu Y, Li J, Zhang Z, Hou Y, Wang L, Zhang J. Hydroxyl-Imidazolium Ionic Liquid-Functionalized MIL-101(Cr): A Bifunctional and Highly Efficient Catalyst for the Conversion of CO 2 to Styrene Carbonate. Inorg Chem 2022; 61:17438-17447. [DOI: 10.1021/acs.inorgchem.2c02156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Liu
- Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China
- Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Jinya Li
- Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China
- Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Zhengkun Zhang
- Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China
- Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Yabin Hou
- Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China
- Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China
| | - Li Wang
- Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China
- Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Jinglai Zhang
- Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China
- Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| |
Collapse
|
22
|
Mitra A, Ghosh S, Paliwal KS, Ghosh S, Tudu G, Chandrasekar A, Mahalingam V. Alumina-Based Bifunctional Catalyst for Efficient CO 2 Fixation into Epoxides at Atmospheric Pressure. Inorg Chem 2022; 61:16356-16369. [PMID: 36194766 DOI: 10.1021/acs.inorgchem.2c02363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The quest toward sustainability and decarbonization demands the development of methods for efficient carbon dioxide capture and utilization. The nonreductive CO2 fixation into epoxides to prepare cyclic carbonates has gained attention in recent years. In this work, we report the development of guanidine hydrochloride-functionalized γ alumina (γ-Al2O3), prepared using green solvents, as an efficient bifunctional catalyst for CO2 fixation. The resulting guanidine-grafted γ-Al2O3 (Al-Gh) proved to be an excellent catalyst to prepare cyclic carbonates from epoxides and CO2 with high selectivity. The nitrogen-rich Al-Gh shows increased CO2 adsorption capacity compared to that of γ-Al2O3. The as-prepared catalyst was able to carry out CO2 fixation at 85 °C under atmospheric pressure in the absence of solvents and external additives (e.g., TBAI or KI). The material showed negligible loss of catalytic activity even after five cycles of catalysis. The catalyst successfully converted many epoxides into their respective cyclic carbonates under the optimized conditions. The gram-scale synthesis of commercially important styrene carbonates from styrene oxide and CO2 using Al-Gh was also achieved. Density functional theory (DFT) calculations revealed the role of alumina in activating the epoxide. This activation facilitated the chloride ion to open the ring to react with CO2. The DFT studies also validated the role of alumina in stabilizing the electron-rich intermediates during the course of the reaction.
Collapse
Affiliation(s)
- Antarip Mitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sourav Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Khushboo S Paliwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Suptish Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Gouri Tudu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Aditi Chandrasekar
- School of Arts and Sciences, Azim Premji University, Bangalore 562125, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
23
|
Synthesis of 3D Cadmium(II)-Carboxylate Framework Having Potential for Co-Catalyst Free CO2 Fixation to Cyclic Carbonates. INORGANICS 2022. [DOI: 10.3390/inorganics10100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Metal-organic frameworks (MOFs) are porous coordination polymers with interesting structural frameworks, properties, and a wide range of applications. A novel 3D cadmium(II)-carboxylate framework, CdMOF ([Cd2(L)(DMF)(H2O)2]n), was synthesized by the solvothermal method using a tetracarboxylic bridging linker having amide functional moieties. The CdMOF crystal structure exists in the form of a 3D layer structure. Based on the single-crystal X-ray diffraction studies, the supramolecular assembly of CdMOF is explored by Hirshfeld surface analysis. The voids and cavities analysis is performed to check the strength of the crystal packing in CdMOF. The CdMOF followed a multistage thermal degradation pattern in which the solvent molecules escaped around 200 °C and the structural framework remained stable till 230 °C. The main structural framework collapsed (>60 wt.%) into organic volatiles between 400–550 °C. The SEM morphology analyses revealed uniform wedge-shaped rectangular blocks with dimensions of 25–100 μm. The catalytic activity of CdMOF for the solvent and cocatalyst-free cycloaddition of CO2 into epichlorohydrin was successful with 100% selectivity. The current results revealed that this 3D CdMOF is more active than the previously reported CdMOFs and, more interestingly, without using a co-catalyst. The catalyst was easily recovered and reused, having the same performance.
Collapse
|
24
|
Chudasama SJ, Shah BJ, Patel KM, Dhameliya TM. The spotlight review on ionic liquids catalyzed synthesis of aza- and oxa-heterocycles reported in 2021. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Chen C, Wang F, Li Q, Wang Y, Ma J. Embedding of SO3H-functionalized ionic liquids in mesoporous MIL-101(Cr) through polyoxometalate bridging: A robust heterogeneous catalyst for biodiesel production. Colloids Surf A Physicochem Eng Asp 2022; 648:129432. [DOI: 10.1016/j.colsurfa.2022.129432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Soybean Oil Epoxidation Catalyzed by a Functionalized Metal–Organic Framework with Active Dioxo-Molybdenum (VI) Centers. Catal Letters 2022. [DOI: 10.1007/s10562-022-04096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractIn this work, a functionalized gallium metal–organic framework with active dioxo-molybdenum (VI) centers was evaluated as a catalyst in the epoxidation of soybean oil using tert-butyl-hydroperoxide as an oxidizing agent. The influence of the reaction time, temperature, and concentration of the oxidizing agent was studied, and it was demonstrated that the highest epoxide selectivity was obtained at 110 °C after 4 h of reaction (29% conversion and 91% selectivity) using a soybean oil/oxidizing agent ratio of 1/2. The stability of the metal–organic framework was confirmed by infrared spectroscopy, X-ray powder diffraction, thermogravimetric analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy EDS. The stability tests demonstrated that the catalyst could be reused in the catalytic process for the recovery of vegetable oils.
Graphical Abstract
Collapse
|
27
|
Chen H, Zhang T, Liu S, Lv H, Fan L, Zhang X. Fluorine-Functionalized NbO-Type {Cu 2}-Organic Framework: Enhanced Catalytic Performance on the Cycloaddition Reaction of CO 2 with Epoxides and Deacetalization-Knoevenagel Condensation. Inorg Chem 2022; 61:11949-11958. [PMID: 35839442 DOI: 10.1021/acs.inorgchem.2c01686] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The high catalytic activity of metal-organic frameworks (MOFs) can be realized by increasing their effective active sites, which prompts us to perform the functionalization on selected linkers by introducing a strong Lewis basic group of fluorine. Herein, the exquisite combination of paddle-wheel [Cu2(CO2)4(H2O)] clusters and meticulously designed fluorine-funtionalized tetratopic 2',3'-difluoro-[p-terphenyl]-3,3″,5,5″-tetracarboxylic acid (F-H4ptta) engenders one peculiar nanocaged {Cu2}-organic framework of {[Cu2(F-ptta)(H2O)2]·5DMF·2H2O}n (NUC-54), which features two types of nanocaged voids (9.8 Å × 17.2 Å and 10.1 Å × 12.4 Å) shaped by 12 paddle-wheel [Cu2(COO)4H2O)2] secondary building units, leaving a calculated solvent-accessible void volume of 60.6%. Because of the introduction of plentifully Lewis base sites of fluorine groups, activated NUC-54a exhibits excellent catalytic performance on the cycloaddition reaction of CO2 with various epoxides under mild conditions. Moreover, to expand the catalytic scope, the deacetalization-Knoevenagel condensation reactions of benzaldehyde dimethyl acetal and malononitrile were performed using the heterogenous catalyst of NUC-54a. Also, NUC-54a features high recyclability and catalytic stability with excellent catalytic performance in subsequent catalytic tests. Therefore, this work not only puts forward a new solution for developing high-efficiency heterogeneous catalysts, but also enriches the functionalization strategies for nanoporous MOFs.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tao Zhang
- Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, People's Republic of China
| | - Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
28
|
Gao W, Wang C, Chen L, Zhu C, Li P, Li J, Liu J, Zhang X. Bifunctional metal‐organic frameworks afforded by postsynthetic modification for efficient cycloaddition of CO
2
and epoxides. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Cui‐Li Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Le Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Cai‐Yong Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Peng Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Ji‐Yang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Changchun P.R. China
| | - Jie‐Ping Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| | - Xiu‐Mei Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education Huaibei Normal University Anhui P.R. China
| |
Collapse
|
29
|
Wei F, Tang J, Zuhra Z, Wang S, Wang X, Wang X, Xie G. [M(Me6Tren)X]X complex as efficacious bifunctional catalyst for CO2 cycloaddition: The synergism of the metal and halogen ions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Mitra A, Biswas T, Ghosh S, Tudu G, Paliwal KS, Ganatra P, Mahalingam V. Prudent Choice of Iron‐based Metal‐Organic Networks for Solvent‐free CO
2
Fixation at Ambient Pressure. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Antarip Mitra
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Tanmoy Biswas
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Sourav Ghosh
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Gouri Tudu
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Khushboo S. Paliwal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Pragati Ganatra
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| |
Collapse
|
31
|
Design and synthesis of pyridinamide functionalized ionic liquids for efficient conversion of carbon dioxide into cyclic carbonates. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Su Z, Ma L, Wei J, Bai X, Wang N, Li J. A Zinc Porphyrin Polymer as Efficient Bifunctional Catalyst for Conversion of CO
2
to Cyclic Carbonates. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhenping Su
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| | - Linjing Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| | - Jiaojiao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| | - Xiaolong Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry & Materials Science, Northwest University Xi’an Shaanxi China
| |
Collapse
|
33
|
Fu HQ, Mao H, Wang C, Yin K, Jin M, Dong Z, Zhao Y, Liu J. The Al( iii)-based polydentate chelate complex catalyzed cycloaddition of carbon dioxide and epoxides: synthetic optimization and mechanistic study. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00196a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aimed at greenhouse gas CO2 high value-added utilization, a N,N′-(propane-1,3-diyl)dipicolinamide (PPPA) supported Al(iii) metal–organic polydentate chelate complex (Al-PPPA) was designed and used to efficiently catalyze CO2 to cyclic carbonates.
Collapse
Affiliation(s)
- Hong-Qing Fu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, 201418, Shanghai, China
| | - Haifang Mao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, 201418, Shanghai, China
| | - Chaoyang Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, 201418, Shanghai, China
| | - Kun Yin
- Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry & Materials Engineering, Fuyang Normal University, 100 West Qinghe Road, Fuyang, Anhui, 236037, China
| | - Miaomiao Jin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, 201418, Shanghai, China
| | - Zhenbiao Dong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, 201418, Shanghai, China
| | - Yun Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, 201418, Shanghai, China
| | - Jibo Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, 201418, Shanghai, China
| |
Collapse
|
34
|
Yang L, Zhang Z, Zhang C, Li S, Liu G, Wang X. An excellent multifunctional photocatalyst cooperated by polyoxometalate-viologen framework for CEES oxidation, Cr(VI) reduction and dyes decolorization under different light regimes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00838f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalytic detoxification of highly toxic agents is a promising approach to protect ecological environment and human health, and the key problem lies in the development of novel efficient photocatalysts. Herein,...
Collapse
|
35
|
Yue S, Qu HL, Song XX, Feng XN. Novel hydroxyl-functionalized ionic liquids as efficient catalysts for the conversion of CO 2 into cyclic carbonates under metal/halogen/cocatalyst/solvent-free conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj00257d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Environmentally friendly synthesis route to carbonates from CO2 and epoxides catalysed by novel hydroxyl-functionalized ionic liquids under metal/halogen/cocatalyst/solvent-free conditions.
Collapse
Affiliation(s)
- Shuang Yue
- Institute of Rare and Scattered Elements Chemistry, College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, China
| | - Hong-Liu Qu
- Institute of Rare and Scattered Elements Chemistry, College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, China
| | - Xin-Xin Song
- Institute of Rare and Scattered Elements Chemistry, College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, China
| | - Xuan-Nuo Feng
- Institute of Rare and Scattered Elements Chemistry, College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, China
| |
Collapse
|
36
|
Wu J, Wan S, Xu O, Song H, Yang J, Zhu X. Pyridine ionic liquid functionalized bimetallic MOF solid-phase extraction coupled with high performance liquid chromatography for separation/analysis sunset yellow. RSC Adv 2022; 12:30928-30935. [PMID: 36349023 PMCID: PMC9614776 DOI: 10.1039/d2ra05980k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
An effective method based on the pyridine ionic liquid functionalized bimetallic MOF solid-phase extractant (Cu/Co-MOF@[PrPy][Br]) coupled with high performance liquid chromatography (HPLC) for the separation/analysis sunset yellow was established. Cu/Co-MOF@[PrPy][Br] was characterized by FTIR, XRD, SEM and TEM. Several important factors, such as pH, amount of extractant, extract time, and types of eluents were investigated in detail. Under the optimal conditions, linear range of the method was 0.05–40.00 μg mL−1, the detection limit was 0.02 μg mL−1, and the linear correlation was good (R2 = 0.9992). The analysis of sunset yellow in soda, effervescent tablet and jelly proved that the method was simple and effective. An effective method based on the pyridine ionic liquid functionalized bimetallic MOF solid-phase extractant (Cu/Co-MOF@[PrPy][Br]) coupled with high performance liquid chromatography (HPLC) for the separation/analysis sunset yellow was established.![]()
Collapse
Affiliation(s)
- Jun Wu
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou, 225002, China
| | - Shuyu Wan
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou, 225002, China
| | - Ouwen Xu
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou, 225002, China
| | - Hanyang Song
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou, 225002, China
| | - Jing Yang
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou, 225002, China
| | - Xiashi Zhu
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
37
|
Li F, Chen Y, Gao A, Tong W, Ji C, Cheng Y, Zhou YH. Integration of polypyridyl-based ionic liquids into MIL-101 for promoting CO 2 conversion into cyclic carbonates under cocatalyst-free and solventless conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj03302j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The polypyridyl-based ionic liquid-functionalized MIL-101(Cr) greatly enhanced the epoxide–CO2 cycloaddition reaction under cocatalyst-free and solventless conditions.
Collapse
Affiliation(s)
- Fangfang Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Yan Chen
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Aijia Gao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Wenjing Tong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Changchun Ji
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Yong Cheng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Ying-Hua Zhou
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
38
|
Liu X, Ding M, Ma P, Yao J. Optimizing the mobility of active species in ionic liquid/MIL-101 composites for boosting carbon dioxide conversion. NEW J CHEM 2022. [DOI: 10.1039/d1nj04914c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mobility of active species has been optimized based on ionic liquid/metal–organic framework (MOF) composites for efficient CO2 chemical fixation.
Collapse
Affiliation(s)
- Xi Liu
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Meili Ding
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Pan Ma
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianfeng Yao
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
39
|
Gao Z, Liang L, Zhang X, Xu P, Sun J. Facile One-Pot Synthesis of Zn/Mg-MOF-74 with Unsaturated Coordination Metal Centers for Efficient CO 2 Adsorption and Conversion to Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61334-61345. [PMID: 34905916 DOI: 10.1021/acsami.1c20878] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bimetallic metal-organic frameworks (MOFs) containing two different inorganic metal nodes exhibited enhanced properties in CO2 adsorption and catalytic conversion compared with the corresponding monometallic MOFs. In this work, the novel bimetallic Zn/Mg-MOF-74 with different ratios of Zn/Mg was synthesized successfully by a facile one-pot method. Powder X-ray diffraction, Fourier transform infrared, X-ray photoelectron spectroscopy, scanning electron microscopy/transmission electron microscopy, N2/CO2 adsorption/desorption, and CO2/NH3-temperature-programmed desorption techniques thoroughly characterized the structure, morphology, and physicochemical properties of Zn/Mg-MOF-74. Besides the excellent CO2 adsorption capacity (128.3 cm3/g at 273 K and 1 bar), Zn0.75Mg0.25-MOF-74 also showed efficient catalytic activity for the cycloaddition reaction of CO2 and epoxides to cyclic carbonates with outstanding yield and selectivity all over 99% under solvent-free and mild conditions (60 °C, 0.8 MPa), outperforming the mechanical combination of Zn-MOF-74 and Mg-MOF-74 with the same metal contents, indicating the synergistic effect of two adjacent metals in bimetallic MOF-74. In addition, the Zn0.75Mg0.25-MOF-74 catalyst could be recycled for at least five runs and possess good versatility to various substrates. Finally, a feasible mechanism of the catalytic reaction was proposed. Thanks to the high surface area, affinity toward CO2, and accessibility of multiple active sites of the unsaturated metal centers as active Lewis acid sites and O atoms from Zn-O and Mg-O as Lewis basic sites, efficient chemical fixation of CO2 to cyclic carbonates was obtained over the Zn0.75Mg0.25-MOF-74 catalyst. The present facile synthesis and application of a robust bimetallic MOF catalyst offered a competitive avenue for the integration of CO2 adsorption and CO2 catalytic conversion.
Collapse
Affiliation(s)
- Ziyu Gao
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Lin Liang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Xiao Zhang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Ping Xu
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
40
|
Wang Y, He R, Wang C, Li G. Ionic liquids supported at MCM-41 for catalyzing CO2 into cyclic carbonates without co-catalyst. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Novel biomass-derived deep eutectic solvents promoted cycloaddition of CO2 with epoxides under mild and additive-free conditions. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Wan S, Xu O, Zhang Y, Li J, Shen Y, Zhu X. Pyridine Ionic Liquid Functionalized MOF-5 Coupled with High-Performance Liquid Chromatography for Analysis of Allura Red in Food Samples. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02173-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Seal N, Neogi S. Intrinsic-Unsaturation-Enriched Biporous and Chemorobust Cu(II) Framework for Efficient Catalytic CO 2 Fixation and Pore-Fitting Actuated Size-Exclusive Hantzsch Condensation with Mechanistic Validation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55123-55135. [PMID: 34766762 DOI: 10.1021/acsami.1c16984] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carbon dioxide (CO2) utilization and one-pot Hantzsch condensation denote two important protocols pertinent to sustainable agenda because of the obvious advantages like reduction in chemical usage, short reaction time, and minimum waste generation. To this end, the astute combination of optimum-sized pore structure with built-in Lewis acid center in metal-organic frameworks (MOFs) can bring about such reactions under energetically favorable conditions and offer a step forward to size-exclusive catalysis. The chemoresistant and twofold interpenetrated Cu(II) framework CSMCRI-13 (CSMCRI = Central Salt & Marine Chemicals Research Institute) is built from a C3-symmetric tricarboxylate ligand and an N,N'-donor linker that undergo incisive amalgamation of the paddle-wheel [Cu2(COO)4] secondary building unit (SBU) and the intrinsically unsaturated Cu(II) node with four coordination. The microporous structure features a dual-pore containing cage-like network with free oxygen-atom-enriched cavities and exhibits appreciable CO2 adsorption with moderate MOF-CO2 interaction in activated form (13a). Benefitting from both, the coordinatively frustrated metal center containing MOF acts as a highly synergistic and solvent-free catalyst in CO2 cycloaddition reaction under an 8 bar CO2 pressure at 70 °C in 6 h. The catalyst furnished admirable reactivity and fair recyclability with a wide range of substrates, wherein sterically encumbered and long-chain epoxides produced poor conversion. This MOF further executes highly regenerable Hantzsch condensation reaction under mild condition with superior activity to contemporary materials, where most of the 1,4-dihydropyridine derivatives are additionally characterized through the single-crystal X-ray diffraction analysis. Importantly, mechanistic proof of the tricomponent condensation involving built-in Lewis acid sites is validated from several control experiments and in-depth analytical studies. To the best of the single-step multicomponent reaction, substrate molecules having incompatible molecular dimension to that of pore size of the framework resulted insignificant conversion and demonstrated the first-ever pore-fitting-induced size selectivity in Hantzsch condensation.
Collapse
Affiliation(s)
- Nilanjan Seal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
44
|
Synthesis of 2-iminothiazolidin-4-ones using guanine functionalized SBA-16 as a solid base catalyst. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Chen H, Zhang Z, Hu T, Zhang X. Nanochannel {InZn}-Organic Framework with a High Catalytic Performance on CO 2 Chemical Fixation and Deacetalization-Knoevenagel Condensation. Inorg Chem 2021; 60:16429-16438. [PMID: 34644055 DOI: 10.1021/acs.inorgchem.1c02262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rare combination of InIII 5p and ZnII 3d in the presence of a structure-oriented TDP6- ligand led to a robust hybrid material of {(Me2NH2)[InZn(TDP)(OH2)]·4DMF·4H2O}n (NUC-42) with the interlaced hierarchical nanochannels (hexagonal and cylindrical) shaped by six rows of undocumented [InZn(CO2)6(OH2)] clusters, which represented the first 5p-3d nanochannel-based heterometallic metal-organic framework. With respect to the multifarious symbiotic Lewis acid-base and Brønsted acid sites in the high porous framework, the catalytic performance of activated NUC-42a upon CO2 cycloaddition with styrene oxide was evaluated under solvent-free conditions with 1 atm of CO2 pressure, which exhibited that the reaction could be well completed at ambient temperature within 48 h or at 60 °C within 4 h with high yield and selectivity. Moreover, because of the acidic function of metal sites and a central free pyridine in the TDP6- ligand, deacetalization-Knoevenagel condensation of acetals and malononitrile could be efficiently facilitated by an activated sample of NUC-42a under lukewarm conditions.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Zhengguo Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
46
|
Chongdar S, Bhattacharjee S, Azad S, Samui S, Dutta S, Bal R, Bhaumik A. Nickel Nanoparticles Immobilized over Mesoporous SBA-15 for Efficient Carbonylative Coupling Reactions Utilizing CO 2: A Spotlight. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40157-40171. [PMID: 34415715 DOI: 10.1021/acsami.1c09942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ecofriendly routes for the synthesis of carbamates and carbonylative coupling products such as benzyl formate derivatives are very demanding for both academia and industries. Foreseeing a sustainable green future, we systematically analyzed the synthesis history of both these chemicals, mentioning their pros and cons. As a step towards green chemistry, here we have optimized the reaction conditions for the synthesis of various benzyl formates from corresponding benzyl halides and carbamates from substituted anilines and alkyl halides catalyzed by Ni(0) nanoparticles (NPs) immobilized over amine-functionalized ordered mesoporous SBA-15 material in the presence of CO2 as C1 source. This spotlight on applications is aimed to provide a clear outlook to date regarding the gradual progress in the synthesis of both these aforementioned chemicals and finally addresses further efforts for overcoming the current challenges.
Collapse
Affiliation(s)
- Sayantan Chongdar
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sudip Bhattacharjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Shiyana Azad
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Surajit Samui
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Saikat Dutta
- Biological & Molecular Science Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida 201303, India
| | - Rajaram Bal
- Light Stock Processing Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, Uttarakhand, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
47
|
Liu L, Jayakumar S, Chen J, Tao L, Li H, Yang Q, Li C. Synthesis of Bifunctional Porphyrin Polymers for Catalytic Conversion of Dilute CO 2 to Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29522-29531. [PMID: 34133113 DOI: 10.1021/acsami.1c04624] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of efficient solid catalysts for catalytic conversion of dilute CO2 is of extreme importance for carbon capture and utilization. We report the synthesis of bifunctional polymers co-incorporated with porphyrin-Zn as Lewis acid sites and Br- as nucleophiles for the cycloaddition of dilute CO2 with epoxides in this work. It was found that the Br-/Zn ratio has a volcano relation with the activity of bifunctional polymers in a cycloaddition reaction, indicating the synergy effect between Lewis acid sites and nucleophiles. The turnover frequency (TOF) of the bifunctional polymer is more than four-fold that of the physical mixture of tetrabutylammonium bromide and porphyrin-Zn-incorporated polymer, implying the enhanced cooperation between Br- and porphyrin-Zn in the polymer network. The bifunctional polymer with optimized Br-/Zn afforded 99% conversion, 99% selectivity, and a TOF as high as 12,000 h-1 for the cycloaddition of CO2 and propylene oxide, which is among the most active solid catalysts ever reported. Furthermore, the bifunctional polymer could efficiently catalyze the cycloaddition of epichlorohydrin with dilute CO2 (7.5% CO2 balanced by N2) even under ambient conditions, demonstrating its potential application in industrial-scale production.
Collapse
Affiliation(s)
- Lina Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sanjeevi Jayakumar
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Lin Tao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qihua Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
48
|
Chen H, Fan L, Hu T, Zhang X. 6s-3d {Ba 3Zn 4}-Organic Framework as an Effective Heterogeneous Catalyst for Chemical Fixation of CO 2 and Knoevenagel Condensation Reaction. Inorg Chem 2021; 60:3384-3392. [PMID: 33595310 DOI: 10.1021/acs.inorgchem.0c03736] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The exquisite combination of Ba2+ and Zn2+ with the aid of 2,4,6-tri(2,4-dicarboxyphenyl)pyridine (H6TDP) under the condition of solvothermal self-assembly generates one highly robust [Ba3Zn4(CO2)12(HCO2)2(OH2)2]-organic framework of {[Ba3Zn4(TDP)2(HCO2)2(OH2)2]·7DMF·4H2O}n (NUC-27), in which adjacent 2D layers are interlaced via hydrogen-bonding interactions to form a 3D skeleton with peapod-like channels and nano-caged voids. It is worth emphasizing that both Ba2+ and Zn2+ ions in NUC-27 display the extremely low coordination modes: hexa-coordinated [Ba(1)] and tetra-coordinated [Ba(2), Zn(1), and Zn(2)]. Furthermore, to the best our knowledge, NUC-27 is one scarcely reported 2D-based nanomaterial with an unprecedented Z-shaped hepta-nuclear heterometallic cluster of [Ba3Zn4(CO2)12(HCO2)2(OH2)2] as SBUs, which not only has plentiful low-coordinated open metal sites but also has the excellent physicochemical properties including omni-directional opening pores, ultrahigh porosity, larger specific surface area, and the coexistence of Lewis acid-base sites. Just as expected, thanks to its rich active metal sites and pyridine groups as strong Lewis acid-base roles, completely activated NUC-27 displays high catalytic efficiency on the chemical transformation of epoxides with CO2 into cyclic carbonates under mild conditions and effectively accelerates the reaction process of Knoevenagel condensation.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
49
|
Pander M, Janeta M, Bury W. Quest for an Efficient 2-in-1 MOF-Based Catalytic System for Cycloaddition of CO 2 to Epoxides under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8344-8352. [PMID: 33560110 PMCID: PMC8023534 DOI: 10.1021/acsami.0c20437] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/28/2021] [Indexed: 05/21/2023]
Abstract
We have devised a straightforward tandem postsynthetic modification strategy for Zr-based metal-organic framework (MOF) materials, which resulted in a series of well-defined 2-in-1 heterogeneous catalysts, cat1-cat8, exhibiting high catalytic activity in the synthesis of cyclic carbonates under solvent-free and co-catalyst-free conditions. The materials feature precisely located co-catalyst moieties decorating the metal nodes throughout the bulk of the MOF and yield cyclic carbonates with up to 99% efficiency at room temperature. We use diffuse reflectance infrared Fourier transform (DRIFT) and solid-state nuclear magnetic resonance (NMR) measurements to elucidate the role of each component in this model catalytic reaction. Establishing a method to precisely control the co-catalyst loading allowed us to observe the cooperativity between Lewis acid sites and the co-catalyst in the 2-in-1 heterogeneous system.
Collapse
|
50
|
Chen H, Hu T, Fan L, Zhang X. One Robust Microporous Tm III-Organic Framework for Highly Catalytic Activity on Chemical CO 2 Fixation and Knoevenagel Condensation. Inorg Chem 2021; 60:1028-1036. [PMID: 33382244 DOI: 10.1021/acs.inorgchem.0c03134] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In terms of documented references, multifunctional MOFs with high catalytic performance could be constructed from the combination of metal cations and polycarboxyl-pyridine ligands, which could efficiently endow crystallized porous frameworks with the coexisting Lewis acid-base properties. Thus, by employing a ligand-directed synthetic strategy, the exquisite combination of wave-like inorganic chains of [Tm(CO2)3(OH2)]n and mononuclear units of [Tm(CO2)4(OH2)2] with the aid of the specially designed ligand of 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine (H5BDCP) generates one highly robust microporous framework of {(Me2NH2)[Tm3(BDCP)2)(H2O)3]·4DMF·H2O}n (simplified as NUC-25), which contains near-rectangular nanochannels and large solvent-residing voids. Furthermore, the activated state of NUC-25 with the removal of associated water molecules is a rarely reported bifunctional heterogeneous catalyst due to the coexistence of Lewis acid-base sites including 6-coordinated Tm3+ ions, uncoordinated carboxyl oxygen atoms, and Npyridine atoms. Just as expected, NUC-25 exhibits greatly high catalytic activity for the cycloaddition reaction of epoxides with CO2 into alkyl cyclic carbonates under bland solvent-free conditions, which should be ascribed to the polarity of nitrogen-containing pyridine heterocycles as Lewis base sites on the inner surface of nano-caged voids except for recognized Lewis acid sites of rare earth cations. Moreover, the excellent pore-size-dependent catalytic property for Knoevenagel condensation reactions confirms that NUC-25 can be viewed as a recyclable bifunctional heterogeneous catalyst. Therefore, these results strongly demonstrate that microporous MOFs assembled from pre-designed polycarboxyl-heterocyclic ligands display better catalytic performance not only for chemical CO2 fixation but also for Knoevenagel condensation reactions.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|